
Coding Lab: iteration and loops

Ari Anisfeld

Fall 2020

1 / 25

Iteration and for-loops (Control flow II)
We use for-loops to repeat a task over many different inputs or to
repeat a simulation process several times.

I How to write for-loops
I When to use a for-loop vs vectorized code

for(value in c(1, 2, 3, 4, 5)) {
print(value)

}

[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

2 / 25

Simple for-loop

for (x in c(3, 6, 9)) {
print(x)

}

[1] 3
[1] 6
[1] 9

3 / 25

Simple for-loop: what is going on?

for (x in c(3, 6, 9)) {
print(x)

}

Our for-loop is equivalent to the following code. For each value in
c(3,6,9), we assign the value to x and the do the action between
the curly brackets in order.

x <- 3
print(x)
x <- 6
print(x)
x <- 9
print(x)

4 / 25

For loops

The general structure of a for loop is as follows:

for (value in list_of_values) {
do something (based on value)

}

for (index in list_of_indices) {
do something (based on index)

}

5 / 25

Example: find sample means

Suppose we want to find the means of increasingly large samples.

mean1 <- mean(rnorm(5))
mean2 <- mean(rnorm(10))
mean3 <- mean(rnorm(15))
mean4 <- mean(rnorm(20))
mean5 <- mean(rnorm(25000))

means <- c(mean1, mean2, mean3, mean4, mean5)

means

[1] 0.397010706 -0.104135904 -0.056565411 -0.128172374 0.002468261

6 / 25

Example: find sample means

Let’s avoid repeating code with a for loop.

sample_sizes <- c(5, 10, 15, 20, 25000)
sample_means <- rep(0, length(sample_sizes))

for (i in seq_along(sample_sizes)) {
sample_means[[i]] <- mean(rnorm(sample_sizes[[i]]))

}

sample_means

[1] -0.649066604 0.225280268 -0.427219446 -0.039233651 0.007913007

In the following slides we’ll explain each step.

7 / 25

Finding sample means, broken down

Assign initial variables before starting the for loop.

determine what to loop over
sample_sizes <- c(5, 10, 15, 20, 25000)

pre-allocate space to store output
sample_means <- rep(0, length(sample_sizes))

To start:

1. create a vector of the sample_sizes we want to use
2. create a vector to store the output

8 / 25

What does sample_means currently look like?

sample_means <- rep(0, length(sample_sizes))
sample_means

[1] 0 0 0 0 0

Why do this? It makes the code more efficient. An alternative is
to build up an object as you go, but this requires copying the data
over and over again.

9 / 25

Alternative ways to preallocate space

sample_means <- vector("double", length = 5)
sample_means <- double(5)

Each data type has a comparable function e.g. logical(),
integer(), character().

To hold data of different types, we’ll use lists.1

data_list <- vector("list", length = 5)

1Lists are vectors that are not “atomic”.
10 / 25

Adding data to a vector, broken down

Determine what sequence to loop over.

for (i in 1:length(sample_sizes)) {

}

11 / 25

A helper function seq_along()

seq_along(x) is synonymous to 1:length(x)

where x is a vector.

Example

vec <- c("x", "y", "z")
1:length(vec)

[1] 1 2 3

seq_along(vec)

[1] 1 2 3

12 / 25

sample_sizes <- c(5, 10, 15, 20, 25000)
seq_along(sample_sizes)

[1] 1 2 3 4 5

(What if sample_sizes is accidentally a 0-length vector? See
what happens in R for Data Science.)

13 / 25

https://r4ds.had.co.nz/iteration.html#for-loops

Adding data to a vector, broken down

sample_sizes <- c(5, 10, 15, 20, 25000)
sample_means <- rep(0, length(sample_sizes))

for (i in seq_along(sample_sizes)) {

}

Use seq_along() to be safe!

14 / 25

Adding data to a vector, broken down

sample_sizes <- c(5, 10, 15, 20, 25000)
sample_means <- numeric(length(sample_sizes))

for (i in seq_along(sample_sizes)) {

sample_means[[i]] <- mean(rnorm(sample_sizes[[i]]))

}

sample_means

[1] -0.3772406322 -0.0651590267 0.0534649974 -0.0170795694 -0.0006586639

Save the mean of the sample to the ith place of the
sample_means vector.

15 / 25

Common error.
This code falls, because we do not store the output in
sample_means in the for loop! (Compare to previous slide).

sample_sizes <- c(5, 10, 15, 20, 25000)
sample_means <- rep(0, length(sample_sizes))

for (i in seq_along(sample_sizes)) {
mean(rnorm(sample_sizes[[i]]))

}

sample_means

[1] 0 0 0 0 0

Right now, we’re calculating the mean, but it’s not being saved
anywhere.

16 / 25

Another example

You get data stored in split over several csv files.

We can read the data into R and store it store it as a single data
set.

setwd("../data/loops")

file_1 <- read_csv("data_1999.csv")
file_2 <- read_csv("data_2000.csv")
...
file_22 <- read_csv("data_2020.csv")

data <- bind_rows(file_1, file_2, ..., file_22)

17 / 25

Aside: how to make the data
The data used for this exercise is fake data which I made with a
for-loop. Run the code below (choose your own working directory)
to follow along.

setwd('../data/loops')

file_list <- paste0("data_", 1999:2020, ".csv")

for (file in file_list) {
data <-

tibble(id = 1:100,
employed = sample(c(0, 1, 1, 1),

100, replace = TRUE),
happy = sample(c(0,1),

100, replace = TRUE))

write_csv(data, file)
}

18 / 25

Aside: bind_rows()?

bind_rows() stacks two dataframe, or combines two vectors into
a dataframe:

df_1 <- tibble(col1 = 1, col2 = "A")
df_2 <- tibble(col1 = 2:3, col2 = c("B", "C"))

bind_rows(df_1, df_2)

A tibble: 3 x 2
col1 col2
<dbl> <chr>
1 1 A
2 2 B
3 3 C

19 / 25

Aside: list.files()
?list.files():

These functions produce a character vector of the names of files
. . . in the named directory.

I pattern ensures we only take the csv files.
I It uses regular expressions where * in *.csv$ matches any

string and .csv ensures the string ends in csv.

list.files("../data/loops", pattern = "*.csv$")

[1] "data_1999.csv" "data_2000.csv" "data_2001.csv" "data_2002.csv"
[5] "data_2003.csv" "data_2004.csv" "data_2005.csv" "data_2006.csv"
[9] "data_2007.csv" "data_2008.csv" "data_2009.csv" "data_2010.csv"
[13] "data_2011.csv" "data_2012.csv" "data_2013.csv" "data_2014.csv"
[17] "data_2015.csv" "data_2016.csv" "data_2017.csv" "data_2018.csv"
[21] "data_2019.csv" "data_2020.csv"

20 / 25

Let’s use a loop to read in the data

file_names <- list.files(pattern = "*.csv$")

output <- vector("list", length(file_names))

for (i in seq_along(file_names)) {
output[[i]] <- read_csv(file_names[[i]]) %>%

mutate(year = str_extract(file_names[[i]], "[0-9]{4}"))
}

data <- bind_rows(output)
View(data)

21 / 25

Let’s use a loop to read in the data. . . an alternative
setwd('../data/loops')

by default, reads files in working directory
file_list <- list.files(pattern = "*.csv$")

out <- tibble()

for (file in file_list) {
temp <- read_csv(file)

out <- bind_rows(out, temp)
}

nrow(out)

[1] 2200
22 / 25

Review: Vectorized operations

When possible, take advantage of the fact that R is vectorized.

a <- 7:11
b <- 8:12
out <- rep(0L, 5)

for (i in seq_along(a)) {
out[[i]] <- a[[i]] + b[[i]]

}

out

[1] 15 17 19 21 23

This is a bad example of a for loop!

23 / 25

The better alternative: vectorized addition

a <- 7:11
b <- 8:12
out <- a + b

out

[1] 15 17 19 21 23

Use vectorized operations and tidyverse functions like mutate()
when you can.

24 / 25

Key points: iteration

I Iteration is useful when we are repeatedly calling the same
block of code or function while changing one (or two) inputs.

I If you can, use vectorized operations.
I Otherwise, for loops work for iteration

I Clearly define what you will iterate over (values or indicies)
I Preallocate space for your output (if you can)
I The body of the for-loop has parametrized code based on

thing your iterating over
I Debug as you code by testing your understanding of what the

for-loop should be doing (e.g. using print())

Further study: Many R coders prefer the map() family functions
from purrr or base R apply family. See iteration in R for Data
Science

25 / 25

https://r4ds.had.co.nz/iteration.html

