
Coding Lab: Functions

Ari Anisfeld

Fall 2020

1 / 38

Functions

example of a function
circle_area <- function(r) {

pi * r ^ 2

}

I What are functions and why do we want to use them?
I How do we write functions in practice?
I What are some solutions to avoid frustrating code?

2 / 38

Motivation

“You should consider writing a function whenever you’ve
copied and pasted a block of code more than twice
(i.e. you now have three copies of the same code)”

I Hadley Wickham, R for Data Science

3 / 38

Instead of repeating code . . .
data %>%

mutate(a = (a - min(a)) / (max(a) - min(a)),
b = (b - min(b)) / (max(b) - min(b)),
c = (c - min(c)) / (max(c) - min(c)),
d = (d - min(d)) / (max(d) - min(d)))

A tibble: 100 x 4
a b c d
<dbl> <dbl> <dbl> <dbl>
1 0.833 0.246 0.328 0.455
2 0.211 0.393 0.470 0.539
3 0.315 0.593 0.235 0.472
4 0.424 0.257 0.607 0.364
5 0.638 0.411 0.407 0.209
6 0.336 0.265 0.285 0.633
7 0.773 0.400 0.500 0.730
8 0.0770 0.531 0.167 0.563
9 0.464 0.352 0.768 0.528
10 0.455 0.629 0.547 0.287
... with 90 more rows

4 / 38

Write a function
rescale_01 <- function(x) {

(x - min(x)) / (max(x) - min(x))
}

data %>%
mutate(a = rescale_01(a),

b = rescale_01(b),
c = rescale_01(c),
d = rescale_01(d))

A tibble: 100 x 4
a b c d
<dbl> <dbl> <dbl> <dbl>
1 0.833 0.246 0.328 0.455
2 0.211 0.393 0.470 0.539
3 0.315 0.593 0.235 0.472
4 0.424 0.257 0.607 0.364
5 0.638 0.411 0.407 0.209
6 0.336 0.265 0.285 0.633
7 0.773 0.400 0.500 0.730
8 0.0770 0.531 0.167 0.563
9 0.464 0.352 0.768 0.528
10 0.455 0.629 0.547 0.287
... with 90 more rows

5 / 38

Function anatomy

The anatomy of a function is as follows:
function_name <- function(arguments) {

do_this(arguments)
}

A function consists of

1. Function arguments1

2. Function body

We can assign the function to a name like any other object in R.

1Tech detail: R refers to these as formals.
6 / 38

Function anatomy: example

I arguments: x
I body: (x - min(x)) / (max(x) - min(x))
I assign to name: rescale_01

rescale_01 <- function(x) {
(x - min(x)) / (max(x) - min(x))

}

Note that we don’t need to explicitly call return()

I the last line of the code will be the value returned by the
function.

7 / 38

Writing a function: printing output

You start writing code to say Hello to all of your friends.

I You notice it’s getting repetitive. . . . time for a function
print("Hello Jasmin!")

[1] "Hello Jasmin!"
print("Hello Joan!")

[1] "Hello Joan!"
print("Hello Andrew!")

[1] "Hello Andrew!"
and so on...

8 / 38

Writing a function: parameterize the code

Start with the body.

Ask: What part of the code is changing?

I Make this an argument

9 / 38

Writing a function: parameterize the code

Start with the body.

Rewrite the code to accommodate the parameterization
print("Hello Jasmin!") becomes ...

name <- "Jasmin"

print(paste0("Hello ", name, "!"))

[1] "Hello Jasmin!"

Check several potential inputs to avoid future headaches

10 / 38

Writing a function: add the structure

name <- "Jasmin"
print(paste0("Hello ", name, "!"))

function(name) {
print(paste0("Hello ", name, "!"))

}

11 / 38

Writing a function: assign to a name

Try to use names that actively tell the user what the code does

I We recommend verb_thing()
I good calc_size() or compare_prices()
I bad prices(), calc(), or fun1().

name <- "Jasmin"
print(paste0("Hello ", name, "!"))

say_hello_to <- function(name) {
print(paste0("Hello ", name, "!"))

}

12 / 38

Simple example: printing output
Test out different inputs!
say_hello_to("Jasmin")

[1] "Hello Jasmin!"
say_hello_to("Joan")

[1] "Hello Joan!"
say_hello_to(name = "Andrew")

[1] "Hello Andrew!"
Cool this function is vectorized!
say_hello_to(c("Jasmin", "Joan", "Andrew"))

[1] "Hello Jasmin!" "Hello Joan!" "Hello Andrew!"

Question: does name exist in my R environment after I run this
function? Why or why not?

13 / 38

Technical aside: typeof(your_function)

Like other R objects functions have types.

Primative functions are of type “builtin”
typeof(`+`)

[1] "builtin"
typeof(sum)

[1] "builtin"

14 / 38

Technical aside: typeof(your_function)

Like other R objects functions have types.

User defined functions, functions loaded with packages and many
base R functions are type “closure”:
typeof(say_hello_to)

[1] "closure"
typeof(mean)

[1] "closure"

15 / 38

Technical aside: typeof(your_function)

This is background knowledge that might help you understand an
error.

For example, you thought you assigned a number to the name “c”
and want to calculate ratio.
ratio <- 1 / c

Error in 1/c : non-numeric argument to binary operator
as.integer(c)

Error in as.integer(c) :
cannot coerce type 'builtin' to vector of type 'integer'

“builtin” or “closure” in this situation let you know your working
with a function!

16 / 38

Second example: calculating the mean of a sample

Your stats prof asks you to simulate a central limit theorem, by
calculating the mean of samples from the standard normal
distribution with increasing sample sizes.
mean(rnorm(1))

[1] 0.9743667
mean(rnorm(3))

[1] -0.6290661
mean(rnorm(30))

[1] -0.009555868
et cetera

17 / 38

Second example: calculating the mean of a sample

The number is changing, so it becomes the argument.
calc_sample_mean <- function(sample_size) {

mean(rnorm(sample_size))

}

I The number is the sample size, so I call it sample_size. n
would also be appropriate.

I The body code is otherwise identical to the code you already
wrote.

18 / 38

Second example: calculating the mean of a sample

For added clarity you can unnest your code and assign the
intermediate results to meaningful names.
calc_sample_mean <- function(sample_size) {

random_sample <- rnorm(sample_size)

sample_mean <- mean(random_sample)

return(sample_mean)
}

return() explicitly tells R what the function will return.

I The last line of code run is returned by default.

19 / 38

Second example: calculating the mean of a sample

If the function can be fit on one line, then you can write it without
the curly brackets like so:
calc_sample_mean <- function(n) mean(rnorm(n))

Some settings call for anonymous functions, where the function has
no name.
function(n) mean(rnorm(n))

function(n) mean(rnorm(n))

20 / 38

Always test your code

Try to foresee the kind of input you expect to use.
calc_sample_mean(1)

[1] 0.04058937
calc_sample_mean(1000)

[1] -0.03409345

We see below that this function is not vectorized. We might hope
to get 3 sample means out but only get 1
read ?rnorm to understand how rnorm
inteprets vector input.
calc_sample_mean(c(1, 3, 30))

[1] -0.2300791

21 / 38

How to deal with unvectorized functions
If we don’t want to change our function, but we want to use it to
deal with vectors, then we have a couple options: Here we are going
to use the function rowwise
#creating a vector to test our function
sample_tibble <- tibble(sample_sizes = c(1, 3, 10, 30))

#using rowwise groups the data by row, allowing calc_sample_mean to be applied to each row in our tibble
sample_tibble %>%

rowwise() %>%
mutate(sample_means = calc_sample_mean(sample_sizes))

A tibble: 4 x 2
Rowwise:
sample_sizes sample_means
<dbl> <dbl>
1 1 -1.54
2 3 -0.251
3 10 0.0151
4 30 -0.167

22 / 38

Adding additional arguments

If we want to be able to adjust the details of how our function runs
we can add arguments

I typically, we put “data” arguments first
I and then “detail” arguments after

calc_sample_mean <- function(sample_size,
our_mean,
our_sd) {

sample <- rnorm(sample_size,
mean = our_mean,
sd = our_sd)

mean(sample)
}

23 / 38

Setting defaults
We usually set default values for “detail” arguments.
calc_sample_mean <- function(sample_size,

our_mean = 0,
our_sd = 1) {

sample <- rnorm(sample_size,
mean = our_mean,
sd = our_sd)

mean(sample)
}

uses the defults
calc_sample_mean(sample_size = 10)

[1] 0.080253

24 / 38

Setting defaults

we can change one or two defaults.
You can refer by name, or use position
calc_sample_mean(10, our_sd = 2)

[1] -1.317715
calc_sample_mean(10, our_mean = 6)

[1] 5.818235
calc_sample_mean(10, 6, 2)

[1] 5.577494

25 / 38

Setting defaults

This won’t work though:
calc_sample_mean(our_mean = 5)

Error in rnorm(sample_size, mean = our_mean, sd = our_sd) :
argument "sample_size" is missing, with no default

26 / 38

Key points

I Write functions when you are using a set of operations
repeatedly

I Functions consist of arguments and a body and are usually
assigned to a name.

I Functions are for humans
I pick names for the function and arguments that are clear and

consistent
I Debug your code as much as you can as you write it.

I if you want to use your code with mutate() test the code with
vectors

For more: See Functions Chapter in R for Data Science

27 / 38

https://r4ds.had.co.nz/functions.html

Additional material

28 / 38

Probability distributions

R has built-in functions for working with distributions.

example what it does?

r rnorm(n) generates a random sample of size n
p pnorm(q) returns CDF value at q
q qnorm(p) returns inverse CDF (the quantile) for a given probability
d dnorm(x) returns pdf value at x

Probability distributions you are familiar with are likely built-in to R.

For example, the binomial distribution has dbinom(), pbinom(),
qbinom(), rbinom(). The t distribution has dt(), pt(), qt(),
rt(), etc.

Read this tutorial for more examples.

29 / 38

https://thomasleeper.com/Rcourse/Tutorials/distributions.html

We should be familar with r functions

I rnorm(): random sampling
rnorm(1)

[1] 0.1669768
rnorm(5)

[1] -0.1132515 -1.8828934 -0.2025573 -0.1816280 -0.5351133
rnorm(30)

[1] 1.1588340 -1.1655278 2.2723098 -0.2096508 -0.5072869 -1.2427515
[7] 0.1494255 0.9268971 0.6766631 -0.4712107 0.8556469 -0.3409810
[13] -0.6097615 0.2945506 1.3716269 1.8340736 -1.4239242 0.8716547
[19] 1.9016704 -0.2865639 -0.1807973 -1.0397804 -1.0332461 -0.8829047
[25] -0.9445835 -0.5347266 -0.2358799 0.1373871 -1.4559071 1.1864456

30 / 38

What are p and q?
pnorm returns the probability we observe a value less than or equal
to some value q.
pnorm(1.96)

[1] 0.9750021
pnorm(0)

[1] 0.5

qnorm returns the inverse of pnorm. Plug in the probability and get
the cutoff.
qnorm(.975)

[1] 1.959964
qnorm(.5)

[1] 0

This might be easier understood with pictures!
31 / 38

What are p and q?

P(x < 1.96) = .975

0.0

0.1

0.2

0.3

0.4

−1.96 0.00 1.96
z score

lik
el

ih
oo

d

area under curve is the probability of being less than a cutoff

pdf of standard normal

32 / 38

What are p and q?

plug .975 in qnorm()

to learn cutoff

plug 1.96 in pnorm()

to learn P(x < q)

0.000

0.250

0.500

0.750

0.975
1.000

−1.96 0.00 1.96
z score (aka q)

F
(z

)
=

 P
r(

x
<

 z
)

 a
ka

 p
cdf of standard normal (the integeral of the pdf)

33 / 38

What is d?

I dnorm(): density function, the PDF evaluated at X.
dnorm(0)

[1] 0.3989423
dnorm(1)

[1] 0.2419707
dnorm(-1)

[1] 0.2419707

34 / 38

What is d?
dnorm gives the height of the distribution function. Sometimes this
is called a likelihood.

dnorm(1) = .24

0.0

0.1

0.2

0.3

0.4

−1.96 0.00 1.96
z score

lik
el

ih
oo

d

d functions give height of pdf

pdf of standard normal

35 / 38

Functions in functions

We can pass functions as arguments to other functions. Before:
calc_sample_mean <- function(sample_size,

our_mean = 0,
our_sd = 1) {

sample_mean <- mean(rnorm(sample_size,
mean = our_mean,
sd = our_sd))

sample_mean
}

36 / 38

Functions in functions

We can pass functions as arguments to other functions. After:
summarize_sample <- function(sample_size,

our_mean = 0,
our_sd = 1,
summary_fxn = mean) {

summary_stat <- summary_fxn(rnorm(sample_size,
mean = our_mean,
sd = our_sd))

summary_stat
}

37 / 38

Functions in functions

calc_sample_mean(sample_size = 10,
our_mean = 0,
our_sd = 1)

[1] -0.1303855
summarize_sample(sample_size = 10,

our_mean = 0,
our_sd = 1,
summary_fxn = max)

[1] 1.19347

calc_sample_mean() is now probably the wrong name for this
function - we should call it summarize_sample() or something like
that.

38 / 38

	Additional material

