
Coding Lab: If statements and conditionals

Ari Anisfeld

Summer 2020

1 / 35

Warning: package ’purrr’ was built under R version 3.6.2

Warning: package ’readxl’ was built under R version 3.6.3

2 / 35

Conditional statements (control flow 1)

We often want to our code to do something depending on the
context. We start with “if” statements.

if (condition is true) {
do this

} else {
do this other thing

}

In this lesson, we’ll

I review logical operators and comparing vectors
I introduce if and else statements
I introduce vectorized if with ifelse in tibbles

3 / 35

Review: Logical Operators

The logical operators are AND (&), OR (|), and NOT (!). What
happens when we use them on booleans?

Let’s start with NOT (!).

!TRUE

[1] FALSE

!FALSE

[1] TRUE

4 / 35

Review: Logical Operators

Replace the conditional statements

!(2 > 1)

5 / 35

Review: Logical Operators

Replace the conditional statements

!(2 > 1)

!TRUE

[1] FALSE

6 / 35

What does this produce?

NOT (0 does not equal 0)
!(0 != 0)

7 / 35

What does this produce?

NOT (0 does not equal 0)
!(0 != 0)

!FALSE

[1] TRUE

8 / 35

Review: Logical OR

OR returns TRUE if at least one term is TRUE.

TRUE | FALSE

[1] TRUE

FALSE | FALSE

[1] FALSE

Notice that Logical OR has a different meaning than “or” the
conjunction has in common English.

9 / 35

Review: Logical OR

(5 > 7) | (10 == 10)

10 / 35

Review: Logical OR

Recall == is the logical comparison for if two things are equal.

5 is greater than 7 OR 10 equals 10"
(5 > 7) | (10 == 10)

FALSE | TRUE

[1] TRUE

11 / 35

Finally, AND (&)

Returns TRUE when both operands are TRUE

TRUE & FALSE

[1] FALSE

TRUE & TRUE

[1] TRUE

12 / 35

This one is harder. . .

!(2 > 6) & (4 > 9 | 3 == 3)

13 / 35

This one is harder. . .

!(2 > 6) & (4 > 9 | 3 == 3)

Break it down:

Start with the left term
first
2 > 6
then
! 2 > 6

14 / 35

This one is harder. . .

!(2 > 6) & (4 > 9 | 3 == 3)

Break it down:

Start with the left term
first
2 > 6

[1] FALSE

then
! 2 > 6

[1] TRUE

15 / 35

This one is harder. . .

!(2 > 6) & (4 > 9 | 3 == 3)

Break it down:

Now try the right term
first
4 > 9
then
3 == 3
so
(4 > 9 | 3 == 3)

16 / 35

This one is harder. . .
!(2 > 6) & (4 > 9 | 3 == 3)

Break it down:

Now try the right term
first
4 > 9

[1] FALSE

then
3 == 3

[1] TRUE

so
(4 > 9 | 3 == 3)

[1] TRUE
17 / 35

This one is harder. . .

!(2 > 6) & (4 > 9 | 3 == 3)

!(FALSE) & (FALSE | TRUE)

[1] TRUE

18 / 35

If statements
The general syntax of an if statement is as follows:

if (condition is TRUE) {
do this

}

For example:

x <- 100

if (x > 0) {
print("x is positive")

}

[1] "x is positive"

19 / 35

If/else statements

Slightly more interesting, the syntax of an if else statement is as
follows:

if (condition is TRUE) {
do this

} else {
do this other thing

}

20 / 35

If/else statements example:

When working on a project with others, it’s sometimes helpful to
set

if (Sys.info()[["user"]] == "arianisfeld") {
base_path <- "~/Documents/coding_lab_examples/"

} else {
base_path <- "~/gdrive/coding_lab_examples/"

}

data <- read_csv(paste0(base_path, "our_data.csv"))

1

1Try running Sys.info() in your console to understand the code a bit more
deeply.

21 / 35

multiple tests with if, else if and else

if (condition is TRUE) {
do this

} else if (second condition is TRUE) {
do this other thing

} else if (third condition is TRUE) {
do this third thing

} else {
do a default behavior

}

NB: a default behavior with else is not necessary.

22 / 35

multiple tests with if, else if and else
Here’s a cheap version of black jack.

score <- 0
my_cards <- sample(2:11, 1) + sample(2:11, 1)
computers_cards <- sample(2:11, 1) + sample(2:11, 1)

if (my_cards > computers_cards) {
score <- score + 1
print("You win")

} else if (my_cards < computers_cards) {
score <- score - 1
print("Better luck next time.")

} else {
print("It’s a tie")

}

[1] "You win"

23 / 35

if can take a compound condition

if ((my_cards > computers_cards & my_cards <= 21) |
computers_cards > 21) {

score <- score + 1
print("You win")

} # etc

As the statement gets more complex, we’re more likely to make
errors.

24 / 35

if is not vectorized and doesn’t handle NAs

if (c(TRUE, FALSE)) { print("if true") }
#> [1] "if true"
#> Warning in if (c(TRUE, FALSE)) {:
the condition has length > 1 and only the
#> first element will be used

if (NA) { print("if true") }
#> Error in if (NA) {: missing value where TRUE/FALSE needed

25 / 35

Vectorized if ifelse statements

At first blush, ifelse() statements look like a quicker way to write an if else
statement

today <- Sys.Date()
ifelse(today == "2020-11-03",

"VOTE TODAY!!",
"Don’t forget to vote on Nov 3rd.")

[1] "Don’t forget to vote on Nov 3rd."

ifelse(condition, returns this if TRUE, returns this if FALSE)

26 / 35

What will the following statements return?

ifelse(TRUE, 1, 2)
ifelse(FALSE, 1, 2)

27 / 35

What will the following statements return?

ifelse(TRUE, 1, 2)

[1] 1

ifelse(FALSE, 1, 2)

[1] 2

28 / 35

What will the following statements return?

ifelse(c(TRUE, FALSE, TRUE), 1, 2)

29 / 35

What will the following statements return?

Unlike if, ifelse is vectorized! It evaluates item by item.

ifelse(c(TRUE, FALSE, TRUE), 1, 2)

[1] 1 2 1

30 / 35

Detour: NAs and missing data

What’s going on in this ifelse() statement?

ifelse(NA, 1, 2)

[1] NA

Unlike if, ifelse can handle NAs and as usual NAs are contagious.

31 / 35

Ifelse statements in dataframes
Ifelse statements work well in dataframes with the mutate()
function. Let’s add a column to the texas_housing_data based
on a conditional.
texas_housing_data %>%

mutate(in_january = ifelse(month == 1, TRUE, FALSE)) %>%
select(city, year, month, sales, in_january)

A tibble: 8,602 x 5
city year month sales in_january
<chr> <int> <int> <dbl> <lgl>
1 Abilene 2000 1 72 TRUE
2 Abilene 2000 2 98 FALSE
3 Abilene 2000 3 130 FALSE
4 Abilene 2000 4 98 FALSE
5 Abilene 2000 5 141 FALSE
6 Abilene 2000 6 156 FALSE
7 Abilene 2000 7 152 FALSE
8 Abilene 2000 8 131 FALSE
9 Abilene 2000 9 104 FALSE
10 Abilene 2000 10 101 FALSE
... with 8,592 more rows

32 / 35

case_when statements, supercharged for multiple cases
If you have a lot of categories, ditch the ifelse statement and use
dplyr’s case_when() function, which allows for multiple
conditions, like the else ifs we saw earlier.
texas_housing_data %>%

mutate(housing_market =
case_when(

median < 100000 ~ "first quartile",
100000 <= median & median < 123800 ~ "second quartile",
123800 <= median & median < 150000 ~ "third quartile",
150000 <= median & median < 350000 ~ "fourth quartile"

)) %>%
select(city, median, housing_market)

A tibble: 8,602 x 3
city median housing_market
<chr> <dbl> <chr>
1 Abilene 71400 first quartile
2 Abilene 58700 first quartile
3 Abilene 58100 first quartile
4 Abilene 68600 first quartile
5 Abilene 67300 first quartile
6 Abilene 66900 first quartile
7 Abilene 73500 first quartile
8 Abilene 75000 first quartile
9 Abilene 64500 first quartile
10 Abilene 59300 first quartile
... with 8,592 more rows

NB: The conditions in case_when can rely on multiple columns.

33 / 35

case_when statements are a bit “surly”
case_when will not do type coercion.
texas_housing_data %>%

mutate(housing_market =
case_when(

median < 100000 ~ 1,
100000 <= median & median < 123800 ~ "second quartile",
123800 <= median & median < 150000 ~ "third quartile",
150000 <= median & median < 350000 ~ "fourth quartile"

)) %>%
select(city, median, housing_market)

Error: must be a double vector, not a character vector
Run ‘rlang::last_error()‘ to see where the error occurred.

Here we try to but doubles and characters in the housing_market column, but
atomic vectors only have one type!

I Rather than coerce and provide a warning, the developers decided to
make this an error

I If using NA as an output you have to specify NA types e.g. NA_integer_,
NA_character_

34 / 35

Recap: if and ifelse

Today we learned how to:

I better understand logical operators and conditional statements
I use control flow with if and if/else statements
I use ifelse() and case_when() statements in conjunction

with mutate to create columns based on conditional
statements.

35 / 35

