
Coding Lab: Vectors and data types

Ari Anisfeld

Summer 2020

1 / 41

Vectors1

Vectors are the foundational data structure in R.

Here we will discuss how to:

I construct vectors and tibbles
I do vectorized math and computations
I deal with missing values
I work with vectors of different data types

1Technically, I’m talking about “atomic vectors”.
2 / 41

Vectors

Vectors store an arbitrary2 number of items of the same type.
numeric vector of length 6
my_numbers <- c(1, 2, 3, 4, 5, 6)

character vector of length 3
my_characters <- c("public", "policy", "101")

2Within limits determined by hardware
3 / 41

Vectors

In R, nearly every object you will work with is a vector
vectors of length 1
tis_a_vector <- 1919
technically_a_logical_vector <- TRUE

The c() function combines vectors
c(c(1, 2, 3), c(4, 5, 6))

[1] 1 2 3 4 5 6

c(tis_a_vector, 1920)

[1] 1919 1920

4 / 41

Creating vectors

There are some nice shortcuts for creating vectors.
c("a", "a", "a", "a")

[1] "a" "a" "a" "a"

rep("a", 4)

[1] "a" "a" "a" "a"

Try out the following:
rep(c("a", 5), 10)
rep(c("a", 5), each = 10)

5 / 41

Creating vectors

There are also several ways to create vectors of sequential numbers:
c(2, 3, 4, 5)

[1] 2 3 4 5

2:5

[1] 2 3 4 5

seq(2, 5)

[1] 2 3 4 5

6 / 41

Creating random vectors

Create random data following a certain distribution
(my_random_normals <- rnorm(5))

[1] -1.05545026 -0.01153022 -0.28120838 0.33791928 0.87737772

(my_random_uniforms <- runif(5))

[1] 0.91992006 0.23537728 0.07467934 0.67655694 0.28866073

7 / 41

Creating empty vectors of a given type

Create empty vectors of a given type3

1 million 0
my_integers <- integer(1e6)

40K ""
my_chrs <- character(4e5)
my_chrs[1:10]

[1] "" "" "" "" "" "" "" "" "" ""

3We’ll discuss what types are soon.
8 / 41

Binary operators are vectorized

We can do math with vectors!
my_numbers <- 1:6

this adds the vectors item by item
my_numbers + my_numbers

[1] 2 4 6 8 10 12

this adds 6 to each object (called recycling)
my_numbers + 6

[1] 7 8 9 10 11 12

9 / 41

Vectorized functions built into R

Some vectorized functions operate on each value in the vector and
return a vector of the same length4

I These are used with mutate()

a_vector <- rnorm(100)
sqrt(a_vector) # take the square root of each number
log(a_vector) # take the natural log of each number
exp(a_vector) # e to the power of each number
round(a_vector, 2) # round each number

str_to_upper(a_chr_vector) # make each chr uppercase
str_replace(a_chr_vector, "e", "3")

4try it out yourself! use ?func to learn more
10 / 41

Warning: Vector recycling

Be careful when operating with vectors. What’s happening here?
a <- 1:6 + 1:5

Warning in 1:6 + 1:5: longer object length is not a multiple of shorter object
length
a

[1] 2 4 6 8 10 7

11 / 41

Warning: Vector recycling

Be careful when operating with vectors. If they’re different lengths,
the shorter vector starts from it’s beginnig (6 + 1 = 7).
a <- c(1, 2, 3, 4, 5, 6) + c(1, 2, 3, 4, 5)

Warning in c(1, 2, 3, 4, 5, 6) + c(1, 2, 3, 4, 5): longer object length is not a
multiple of shorter object length

1 + 1,
2 + 2,
3 + 3,
4 + 4,
5 + 5,
!!!6 + 1!!! Recycled.
a

[1] 2 4 6 8 10 7

12 / 41

Binary operators are vectorized

We can do boolean logic with vectors!
my_numbers <- 1:6

c(1, 2, 3, 4, 5, 6) > c(1, 1, 3, 3, pi, pi)
occurs item by item
my_numbers > c(1, 1, 3, 3, pi, pi)

[1] FALSE TRUE FALSE TRUE TRUE TRUE

13 / 41

Binary operators are vectorized

We can do boolean logic with vectors!
my_numbers <- 1:6
behind the scenes 4 is recycled
to make c(4, 4, 4, 4, 4, 4)
my_numbers > 4

[1] FALSE FALSE FALSE FALSE TRUE TRUE

my_numbers == 3

[1] FALSE FALSE TRUE FALSE FALSE FALSE

14 / 41

Functions that reduce vectors

Others take a vector and return a summary5

I These are used with summarize()

sum(a_vector) # add all the numbers
median(a_vector) # find the median
length(a_vector) # how long is the vector
any(a_vector > 1) # TRUE if any number in a_vector > 1

a_chr_vector <- c("a", "w", "e", "s", "o", "m", "e")
paste0(a_chr_vector) # combine strings

5try it out yourself! use ?func to learn more
15 / 41

Tibble columns are vectors

We can create tibbles manually

I To test out code on a simpler tibble
I To organize data from a simulation

care_data <- tibble(
id = 1:5,
n_kids = c(2, 4, 1, 1, NA),
child_care_costs = c(1000, 3000, 300, 300, 500),
random_noise = rnorm(5, sd = 5)*30

)

16 / 41

Subsetting

Three ways to pull out a column as a vector.6

tidy way
care_data %>% pull(n_kids)

[1] 2 4 1 1 NA

base R way
care_data$n_kids

[1] 2 4 1 1 NA

base R way
care_data[["n_kids"]]

[1] 2 4 1 1 NA

6See Appendix for more on subsetting
17 / 41

Subsetting
Two ways to pull out a column as a tibble
tidy way
care_data %>% select(n_kids)

A tibble: 5 x 1
n_kids
<dbl>
1 2
2 4
3 1
4 1
5 NA

base R way
care_data["n_kids"]

A tibble: 5 x 1
n_kids
<dbl>
1 2
2 4
3 1
4 1
5 NA

18 / 41

Type issues

Sometimes you load a data set, write code that makes sense and get
an error like this:
care_data %>%

mutate(spending_per_child = n_kids / child_care_costs)

Error in n_kids/child_care_costs : non-numeric
argument to binary operator

19 / 41

Type issues

glimpse(care_data)

Observations: 5
Variables: 4
$ id <int> 1, 2, 3, 4, 5
$ n_kids <dbl> 2, 4, 1, 1, NA
$ child_care_costs <dbl> 1000, 3000, 300, 300, 500
$ random_noise <dbl> 102.8039, 27.9611, -142.2101, 110.9072, -432.2734

20 / 41

Data types

R has four primary types of atomic vectors

I these determine how R stores the data (technical)

7

7Image from https://adv-r.hadley.nz/vectors-chap.html
21 / 41

https://adv-r.hadley.nz/vectors-chap.html

Data types

Focusing on the types, we have:
logical, also known as booleans
type_logical <- FALSE
type_logical <- TRUE

integer and double, together are called: numeric
type_integer <- 1L
type_double <- 1.0

type_character <- "abbreviated as chr"
type_character <- "also known as a string"

22 / 41

Testing types

a <- "1"
typeof(a)

[1] "character"

is.integer(a)

[1] FALSE

is.character(a)

[1] TRUE

23 / 41

Testing types

In our example:
typeof(care_data$child_care_costs)

[1] "double"

typeof(care_data$n_kids)

[1] "double"

24 / 41

Type coercion

The error we got when we tried a + b was because a is a character.
We can reassign types on the fly:
a <- "4"
as.integer(a) + 3

[1] 7

as.numeric(a) + 3

[1] 7

25 / 41

NAs introduced by coercion

The code produces a warning! Why? R does not know how to turn
the string “unknown” into an integer. So, it uses NA which is how R
represents missing or unknown values.
as.integer("Unknown")

Warning: NAs introduced by coercion

[1] NA

26 / 41

NAs are contagious

NA + 4

[1] NA

max(c(NA, 4, 1000))

[1] NA

27 / 41

Type coercion

To address our problem, we use mutate() and as.integer() to
change the type of n_kids

care_data %>%
mutate(n_kids = as.integer(n_kids),

spending_per_kid = child_care_costs / n_kids)

A tibble: 5 x 5
id n_kids child_care_costs random_noise spending_per_kid
<int> <int> <dbl> <dbl> <dbl>
1 1 2 1000 103. 500
2 2 4 3000 28.0 750
3 3 1 300 -142. 300
4 4 1 300 111. 300
5 5 NA 500 -432. NA

28 / 41

Automatic coercion (Extension material to be discussed
live)

Some type coercion is done by R automatically:
paste0() is a function that combines two chr into one
paste0("str", "ing")

[1] "string"

paste0(1L, "ing")

[1] "1ing"

1L is an int, but R will coerce it into a chr in this context.

29 / 41

Automatic coercion

Logicals are coercible to numeric or character. This is very useful!

What do you think the following code will return?
TRUE + 4
FALSE + 4
paste0(FALSE, "?")
mean(c(TRUE, TRUE, FALSE, FALSE, TRUE))

30 / 41

Automatic coercion

TRUE + 4

[1] 5

FALSE + 4

[1] 4

paste0(FALSE, "?")

[1] "FALSE?"

mean(c(TRUE, TRUE, FALSE, FALSE, TRUE))

[1] 0.6

31 / 41

NAs are contagious, redux.

b <- c(NA, 3, 4, 5)
sum(b)

[1] NA

32 / 41

NAs are contagious, redux.

Often, we can tell R to ignore the missing values.
b <- c(NA, 3, 4, 5)
sum(b, na.rm = TRUE)

[1] 12

33 / 41

Subsetting vectors

Use [[for subsetting a single value
letters is built into R and has lower case letters from the alphabet
get the third letter in the alphabet
letters[[3]]

[1] "c"

Use [for subsetting multiple values
get the 25th, 5th and 19th letters in the alphabet
letters[c(25,5,19)]

[1] "y" "e" "s"

34 / 41

Subsetting vectors
Using a negative sign, allows subsetting everything except th
my_numbers <- c(2, 4, 6, 8, 10)
get all numbers besides the 1st
my_numbers[-1]

[1] 4 6 8 10

get all numbers besides the 1st and second
my_numbers[-c(1,2)]

[1] 6 8 10

We can also subset with booleans
get all numbers where true
my_numbers[c(TRUE, FALSE, FALSE, TRUE, FALSE)]

[1] 2 8

my_numbers[my_numbers > 4]

[1] 6 8 10
35 / 41

Subsetting recommendations

I recommend sticking with the tidy version when working with
tibbles and data.

I Tidyverse functions will cover nearly all of your data processing
needs.

I The [and [[subsetting have a lot of subtle and unexpected
behavior.

I If you find yourself doing “programming”" in R then it is worth
revisiting subsetting in adv-r

36 / 41

Example: Using vectors to calculate a sum of fractions

Use R to calculate the sum

10∑
n=0

1
2n

How would you translate this into code?

37 / 41

Example: Using vectors to calculate a sum of fractions

We go from math notation

10∑
n=0

1
2n

to R code:
numerators <- rep(1, 11)
denominators <- 2 ^ c(0:10)

sum(numerators/denominators)

[1] 1.999023

38 / 41

Recap: Vectors and data types

We discussed how to:

I Create vectors and tibbles for various circumstances
I Do vectorize operations and math with vectors (we implicitly

did this with mutate)
I Subset tibbles (we explicitly did this with select and filter)
I Understand data types and use type coercion when necessary.

39 / 41

Technical note: Atomic vectors vs lists

I Atomic vectors have a single type.
I Lists can hold data of multiple types.8

8This is beyond our scope, but lists can be thought of as a vector of pointers.
The interested student can read more at https://adv-r.hadley.nz/

40 / 41

https://adv-r.hadley.nz/

Technical note: a Lists holding multiple types.

a_list <- list(1L, "fun", c(1,2,3))
typeof(a_list)

[1] "list"

typeof(a_list[[1]])

[1] "integer"

typeof(a_list[[2]])

[1] "character"

typeof(a_list[[3]])

[1] "double"

41 / 41

