Coding Lab: Vectors and data types

Ari Anisfeld

Summer 2020

/41

Vectors!

Vectors are the foundational data structure in R.
Here we will discuss how to:

construct vectors and tibbles
do vectorized math and computations
deal with missing values

>
| 2
>
» work with vectors of different data types

!Technically, I'm talking about “atomic vectors”.

N)

41

Vectors

Vectors store an arbitrary? number of items of the same type.

numeric vector of length 6
my_numbers <- c(1, 2, 3, 4, 5, 6)

character vector of length 3
my_characters <- c("public", "policy", "101")

2Within limits determined by hardware

41

Vectors

In R, nearly every object you will work with is a vector

vectors of length 1
tis_a_vector <- 1919
technically_a_logical_vector <- TRUE

The ¢ () function combines vectors
c(c(1, 2, 3), c(4, 5, 6))

[1] 1 23 45 6
c(tis_a_vector, 1920)

[1] 1919 1920

41

Creating vectors

There are some nice shortcuts for creating vectors.
c(”a“, "a”, “a", "a"

[1] "a" "a" "a" "a"

rep("a", 4)

[1] "a" "a" "a" "a"

Try out the following:

rep(c(”a”, 5)’ 10)
rep(c("a", 5), each = 10)

Creating vectors

There are also several ways to create vectors of sequential numbers:

c(2, 3, 4, 5)

[1] 23 4 5
2:5

[1] 23 45
seq(2, 5)

[1] 2345

6/41

Creating random vectors

Create random data following a certain distribution

(my_random_normals <- rnorm(5))

[1] -1.05545026 -0.01153022 -0.28120838 0.33791928 0.!

(my_random_uniforms <- runif(5))

[1] 0.91992006 0.23537728 0.07467934 0.67655694 0.28866(

Creating empty vectors of a given type

Create empty vectors of a given type3

1 million O
my_integers <- integer(le6)

40 nn
my_chrs <- character(4eb)

my_chrs[1:10]

[1] nmo oo o nnonnonn

3We'll discuss what types are soon.

41

Binary operators are vectorized

We can do math with vectors!

my_numbers <- 1:6

this adds the wvectors item by item

my_numbers + my_numbers

[1] 2 4 6 8 10 12

this adds 6 to each object
my_numbers + 6

[1] 7 8 9 10 11 12

(called recycling)

/41

Vectorized functions built into R

Some vectorized functions operate on each value in the vector and
return a vector of the same length?

» These are used with mutate()

a_vector <- rnorm(100)

sqrt(a_vector) # take the square Toot of each number
log(a_vector) # take the natural log of each number
exp(a_vector) # e to the power of each number
round(a_vector, 2) # round each number

str_to_upper(a_chr_vector) # make each chr uppercase
str_replace(a_chr_vector, "e", "3")

“try it out yourself! use ?func to learn more
10/41

Warning: Vector recycling

Be careful when operating with vectors. What's happening here?

a<-1:6 + 1:5

Warning in 1:6 + 1:5: longer object length is not a mul
length

a

[11] 2 4 6 810 7

11/41

Warning: Vector recycling

Be careful when operating with vectors. If they're different lengths,
the shorter vector starts from it's beginnig (6 + 1 = 7).

a<-c(1, 2, 3, 4, 5, 6) + c(1, 2, 3, 4, 5)

Warning in c(1, 2, 3, 4, 5, 6) + c(1, 2, 3, 4, 5): long
multiple of shorter object length

#1 + 1,

2+ 2,

#3 + 3,

#4+4,

#5 + 5,

1116 + 111! Recycled.

a

[1] 2 4 6 810 7

12 /41

Binary operators are vectorized

We can do boolean logic with vectors!

my_numbers <- 1:6

#c(1, 2, 3, 4, 5, 6) > c(1, 1, 3, 3, pi, pi)
occurs item by item

my_numbers > c(1, 1, 3, 3, pi, pi)

[1] FALSE TRUE FALSE TRUE TRUE TRUE

13 /41

Binary operators are vectorized

We can do boolean logic with vectors!

my_numbers <- 1:6
behind the scenes 4 1s recycled

to make c(4, 4, 4, 4, 4, 4)

my_numbers > 4

[1] FALSE FALSE FALSE FALSE TRUE TRUE

my_numbers ==

[1] FALSE FALSE TRUE FALSE FALSE FALSE

14 /41

Functions that reduce vectors

Others take a vector and return a summary®

» These are used with summarize ()

sum(a_vector) # add all the numbers

median(a_vector) # find the median

length(a_vector) # how long s the wector
any(a_vector > 1) # TRUE if any number in a_vector > 1

a_Chr_veCtOr <_ c(llall’ llwll’ llell, IISII’ lloll’ llmll, Ilell)

pasteO(a_chr_vector) # combine strings

Stry it out yourself! use ?func to learn more
15/41

Tibble columns are vectors

We can create tibbles manually

» To test out code on a simpler tibble
» To organize data from a simulation

care_data <- tibble(
id = 1:5,
n_kids = c(2, 4, 1, 1, NA),
child _care_costs = c(1000, 3000, 300, 300, 500),
random_noise = rnorm(5, sd = 5)*30

16 /41

Subsetting

Three ways to pull out a column as a vector.®
tidy way

care_data %>’ pull(n_kids)

[1] 2 4 1 1 NA

base R way
care_data$n_kids

[1] 2 4 1 1 NA

base R way
care_datal[["n_kids"]]

[11] 2 4 1 1 NA

6See Appendix for more on subsetting
17 /41

Subsetting

Two ways to pull out a column as a tibble

tidy way
care_data %>, select(n_kids)

A tibble: 5 x 1

n_kids
<dbl>
1 2
2 4
3 1
4 1
5 NA

base R way
care_data["n kids"]

A tibble: 5 x 1
n_kids
<dbl> 18/41

Type issues

Sometimes you load a data set, write code that makes sense and get
an error like this

care_data %>%
mutate (spending_per_child = n_kids / child_care_costs)

Error in n_kids/child_care_costs : non-numeric
argument to binary operator

19/41

Type issues

glimpse(care_data)

(Observations: 5

Variables: 4

$ id <int> 1, 2, 3, 4, 5

$ n_kids <dbl> 2, 4, 1, 1, NA

$ child_care_costs <dbl> 1000, 3000, 300, 300, 500

$ random_noise <dbl> 102.8039, 27.9611, -142.2101,

20 /41

Data types

R has four primary types of atomic vectors

> these determine how R stores the data (technical)

Vector

t

Atomic

T

Numeric

X\

Logical Integer Double Character ;

"Image from https://adv-r.hadley.nz/vectors-chap.html

21 /41

https://adv-r.hadley.nz/vectors-chap.html

Data types

Focusing on the types, we have:

logical, also known as booleans
type_logical <- FALSE
type_logical <- TRUE

integer and double, together are called: numeric
type_integer <- 1L
type_double <- 1.0

type_character <- "abbreviated as chr"
type_character <- "also known as a string"

22/41

Testing types

a <= """
typeof (a)

[1] "character"

is.integer(a)

[1] FALSE

is.character(a)

[1] TRUE

23 /41

Testing types

In our example:

typeof (care_data$child_care_costs)

[1] "double"
typeof (care_data$n_kids)

[1] "double"

24 /41

Type coercion

The error we got when we tried a + b was because a is a character.
We can reassign types on the fly:

a <_ ||4"
as.integer(a) + 3

[1] 7

as.numeric(a) + 3

[1]1 7

25 /41

NAs introduced by coercion

The code produces a warning! Why? R does not know how to turn
the string “unknown” into an integer. So, it uses NA which is how R
represents missing or unknown values.

as.integer ("Unknown")

Warning: NAs introduced by coercion

[1] NA

26 /41

NAs are contagious

NA + 4

[1] NA
max(c(NA, 4, 1000))

[1] NA

27 /41

Type coercion

To address our problem, we use mutate() and as.integer() to
change the type of n_kids

care_data %>%
mutate(n_kids = as.integer(n_kids),
spending_per_kid = child_care_costs / n_kids)

A tibble: 5 x 5

id n_kids child_care_costs random_noise spending_p
<int> <int> <dbl> <dbl>

1 1 2 1000 103.

2 2 4 3000 28.0

3 3 1 300 -142.

4 4 1 300 111.

5 5 NA 500 -432.

28 /41

Automatic coercion (Extension material to be discussed
live)

Some type coercion is done by R automatically:

paste0() is a function that combines two chr into one
pasteO("str", "ing")

[1] "string"
pasteO(1L, "ing")

[1] "1ing"

1L is an int, but R will coerce it into a chr in this context.

29 /41

Automatic coercion

Logicals are coercible to numeric or character. This is very useful!

What do you think the following code will return?

TRUE + 4

FALSE + 4

paste0(FALSE, "7")

mean(c (TRUE, TRUE, FALSE, FALSE, TRUE))

30/41

Automatic coercion

TRUE + 4

[1] 5
FALSE + 4

[1] 4
pasteO(FALSE, "7")

[1] "FALSE?"
mean(c(TRUE, TRUE, FALSE, FALSE, TRUE))

[1] 0.6

31/41

NAs are contagious, redux.

b <- c(NA, 3, 4, 5)
sum(b)

[1] NA

32/41

NAs are contagious, redux.

Often, we can tell R to ignore the missing values.

b <- c(NA, 3, 4, 5)
sum(b, na.rm = TRUE)

[1] 12

33/41

Subsetting vectors

Use [[for subsetting a single value

letters 7s butlt into R and has lower case letters from
get the third letter in the alphabet
letters[[3]]

[1] “C"

Use [for subsetting multiple values

get the 25th, 5th and 19th letters in the alphabet
letters[c(25,5,19)]

[1] ||y|| neu "S"

34 /41

Subsetting vectors
Using a negative sign, allows subsetting everything except th

my_numbers <- c(2, 4, 6, 8, 10)
get all numbers besides the 1st
my_numbers [-1]

[1] 4 6 8 10

get all numbers besides the 1st and second
my_numbers[-c(1,2)]
[11 6 8 10

We can also subset with booleans

get all numbers where true
my_numbers [c(TRUE, FALSE, FALSE, TRUE, FALSE)]

[1] 2 8

my_numbers [my_numbers > 4]
35/41

Subsetting recommendations

| recommend sticking with the tidy version when working with
tibbles and data.

» Tidyverse functions will cover nearly all of your data processing
needs.

» The [and [[subsetting have a lot of subtle and unexpected
behavior.

» If you find yourself doing “programming”" in R then it is worth
revisiting subsetting in adv-r

36

41

Example: Using vectors to calculate a sum of fractions

Use R to calculate the sum

10 i
n=0 2"

How would you translate this into code?

37 /41

Example: Using vectors to calculate a sum of fractions

We go from math notation

n
n=0 2

to R code:

numerators <- rep(1l, 11)
denominators <- 2 ~ c(0:10)

sum(numerators/denominators)

[1] 1.999023

38 /41

Recap: Vectors and data types

We discussed how to:

» Create vectors and tibbles for various circumstances

» Do vectorize operations and math with vectors (we implicitly
did this with mutate)

> Subset tibbles (we explicitly did this with select and filter)

» Understand data types and use type coercion when necessary.

39 /41

Technical note: Atomic vectors vs lists

» Atomic vectors have a single type.
» Lists can hold data of multiple types.?

Vector NULL

/N

Atomic List

8This is beyond our scope, but lists can be thought of as a vector of pointers.

The interested student can read more at https://adv-r.hadley.nz/

40 /41

https://adv-r.hadley.nz/

Technical note: a Lists holding multiple types.
a_list <- 1list(1L, "fun", c(1,2,3))
typeof (a_list)

[1] "list"
typeof (a_list[[1]1])

[1] "integer"
typeof (a_list[[2]])

[1] "character"
typeof (a_list[[3]])

[1] "double"

41 /41

