
Coding Lab: Why code? and getting situated

Ari Anisfeld

Summer 2020

1 / 24

2 / 24

Intro to coding lab

I Why are we here?
I What are we going to do?
I A quick introduction to R and R Studio and the tidyverse

3 / 24

Why coding?

Many public policy jobs and the Harris curriculum rely on
programming

I to quickly engage with policy data
I to complete statistical analyses

Why R?

I Great data manipulation and visualization suite
I Strong statistical packages (e.g. program evaluation, machine

learning)
I Complete programming language with low barriers to entry
I Open source and free

4 / 24

An example
I wanted to understand racial disparities of Covid-19.

−50

0

50

100

150

200

2020−01 2020−07 2021−01 2021−07P
er

ce
nt

 o
f d

ea
th

s
ab

ov
e

ex
pe

ct
ed

 d
ea

th
s

(w
ee

kl
y

m
ea

n
20

15
−

20
19

 fo
r

gi
ve

n
w

ee
k)

Hispanic Non−Hispanic Asian Non−Hispanic Black Non−Hispanic White

Data source: CDC

Racial disparities of Covid−19, IL

5 / 24

What will we cover?
Foundations:

0. R, RStudio and packages
1. Reading files, and manipulating data with dplyr
2. Vectors and data types
3. If statements
4. Analyzing data with groups
5. Loops
6. Functions
7. Graphing with ggplot (Extra lesson)

Fall Coding Lab condenses material into 5 lessons

In stats 1 and other courses, you will build off of these lessons:

I extend your capabilities with the functions we teach you
I introduce statistics functions
I introduce new packages and tools based on needs

6 / 24

Learning philosophy

I We learn coding by experimenting with code.

I Coding requires a different modality of thinking

I Coding can be frustrating

I We develop self-sufficiency by learning where to get help and
how to ask for help

I Coding lab is for you.

7 / 24

How will we progress?

1. Video lectures:

I Have R open. Pause regularly.
I Focus on main idea first.

2. Practice in labs (most important part):

I You learn coding by coding.
I Break up into small groups and work on problems with peer

and TA support

3. Q and A (live session):

I Please send me questions ahead of class
I May include additional practice problems.

4. Final project: (see next slide)

8 / 24

Final project:

You’ll know you’re ready for policy school coding, if you can open a
data set of interest to you and produce meaningful analysis. For the
final project, you will:

I Pick a data set aligned with your policy interests (or not)
I Use programming skills to engage with data and make a data

visualization showing something you learned from the data.

9 / 24

Getting help

I R’s ? documentation is very good, esp. for tidyverse code.

I Rstudio has useful cheatsheets for dplyr and ggplot
I In the menu bar, select help > cheatsheets

I Get situated with R for Data Science https://r4ds.had.co.nz/

I google and stackoverflow are your friends for idiosyncratic
problems

I googling is its own skill
I add “in R tidyverse” to your searches for better targeted help

10 / 24

https://r4ds.had.co.nz/

A quick introduction to R and R Studio and the
tidyverse

We will

I Discuss what Rstudio is
I Introduce minimal information to get started working with R
I Learn how to install and load packages
I Discuss what the tidyverse is

11 / 24

What is RStudio?

R Studio is an “integrated developement environment” for R.

I It provides a console to access R directly.
I A text editor to write R scripts and work with Rmds
I An enviroment and history tab that provide useful information

about what objects you have in your R session
I A help / plots / files / packages etc. section

12 / 24

Basic syntax: Variable assignment

We use <- for assigning variables in R.
my_number <- 4
my_number

[1] 4

13 / 24

Variable assignment

We can re-assign a variable as we wish. This is useful if we want to
try the same math with various different numbers.
my_number <- 2
my_output <- sqrt((12 * my_number) + 1)

14 / 24

Variable assignment
We assign all sorts of objects to names including data sets and
statistical models so that we can refer to them later.

I use names that are meaningful
model_fit <- lm(mpg ~ disp + cyl + hp, mtcars)

summary(model_fit)

##
Call:
lm(formula = mpg ~ disp + cyl + hp, data = mtcars)
##
Residuals:
Min 1Q Median 3Q Max
-4.0889 -2.0845 -0.7745 1.3972 6.9183
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 34.18492 2.59078 13.195 1.54e-13 ***
disp -0.01884 0.01040 -1.811 0.0809 .
cyl -1.22742 0.79728 -1.540 0.1349
hp -0.01468 0.01465 -1.002 0.3250

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 3.055 on 28 degrees of freedom
Multiple R-squared: 0.7679, Adjusted R-squared: 0.743
F-statistic: 30.88 on 3 and 28 DF, p-value: 5.054e-09

15 / 24

Using functions

Functions are procedures that take an input and provide an output.
sqrt(4)

[1] 2
median(c(3, 4, 5, 6, 7))

[1] 5

16 / 24

Function arguments

Function inputs are called arguments.

Functions know what the argument is supposed to do based on

I name
I position

f <- function(x, y) {
2 * x + y

}

f(7, 0)

[1] 14
f(y = 7, x = 0)

[1] 7

17 / 24

Finding help with ?

?sum

I Description

sum returns the sum of all the values present in its
arguments.

I Usage (API)

sum(..., na.rm = FALSE)

I Arguments

... numeric or complex or logical vectors.

I Examples (scroll down!)

sum(1, 2, 3, 4, 5)

18 / 24

what are packages?

A package makes a new set of functions available to you.

Benefits: - Don’t need to code everything from scratch - Often
functions are optimized using C or C++ code to speed up certain
steps.

Analogy:
- base R comes with screw drivers and hand saws.
- packages give you power tools

19 / 24

installing and loading packages

To use a package we need to:

I install it once from the internet
install.packages("readxl") # do this one time

directly in console

I load it each time we restart R
library(readxl) # add this to your script / Rmd

everytime you want to use
read_xlsx("some_data.xls")

I package::command() lets you call a function without loading
the library

readxl::read_xlsx("some_data.xls")

20 / 24

common package error

The package ‘haven’ provides a function to read dta files called
read_dta(). What goes wrong here?
install.packages("haven")
our_data <- read_dta("my_file.dta")

Error in read_dta("my_file.dta") :
could not find function "read_dta"

21 / 24

common package error

We need to load the package using library()!
library(haven)
our_data <- read_dta("my_file.dta")

22 / 24

tidyverse: set of useful packages

Think of the tidyverse packages providing a new dialect for R.
library(tidyverse)

-- Attaching packages ----------------------------------
v ggplot2 3.3.0 v purrr 0.3.4
v tibble 2.1.3 v dplyr 0.8.5
v tidyr 1.0.2 v stringr 1.4.0
v readr 1.3.1 v forcats 0.5.0

-- Conflicts --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()

23 / 24

Recap: Intro to R, RStudio and the tidyverse

After going through this video, you should understand how to

I navigate and use Rstudio’s features
I particularly, the console, the text editor and help

I assign objects to names with <-
I use functions by providing inputs and learn more with ?
I install.packages() (once) and then load them with

library() (each time you restart R)

24 / 24

