Coding lab project

Ari Anisfeld

8/30/2021

Your final project is quite simple. You will pick a data set that speaks to you and try to uncover something interesting which you will visualize in a plot. You will also compute some summary statistics that you will show in a summary table. Your TAs will review your work.

Suggested due date: September 17, 5pm upload your Rmd and pdf to Gradescope. Feel free to submit your work earlier. Extended due date: September 24, 5pm We will not review work that is turned in after that point.

Format:

You will turn in a knitted pdf that has the following sections. - graph in which you load your data set and provide the minimal code that produces your graph. - table in which you create and print a summary table with minimal code. - appendix (optional) in which you share code you used during data exploration, e.g. extensions of your main plot, other plots you attempted on your search for your main plot.

I have provided a sample project at the end of this document.

You are welcome to use google and stackoverflow as you procede. Please cite your sources if you borrow code from stackoverflow or someone's blog. To cite, just add a comment with the url. See, the last code line of the sample project where I used stackoverflow to figure out how to reformat my legend.

We will review how to use Rmds with you. But here are some quick tips.

- You make a new section in Rmd using # section title.
- When you read in you data, we do not want to see messages or warnings. To avoid this start the code block where you read the data with the following {r, message = FALSE, warning = FALSE}.
- If you have a line of code that is too long, it will be cutoff. Most R code can be split across two lines.
- Knit early and often! This is how you know if the Rmd is working how you think it is.
- To make your table look nice, you can use knitr::kable(your data). (See example below).

Datasets:

Below is a list of suitable data sources. You are welcome to and encouraged to find a data source not on this list that speaks to your policy interests. Many of these data sources have a wide range of data sets. Pick one that comes in tabular format with several variables that are interesting¹. I recommend that once you pick a data source that is sufficient stick with it, so you have ample time to focus on your R skills.

¹By which I mean there's variation.

Description	url		
Weekly Covid data from US CDC (several	https://www.cdc.gov/nchs/nvss/vsrr/covid_weekly/		
datasets available, follow links)			
Washington Post fatal police shooting data	https://github.com/washingtonpost/data-police-shootings		
has records of every fatal shooting in the			
United States by a police officer in the line of			
duty since Jan. 1, 2015. Their github has			
other data mixed in with code they use for			
other stuff.			
Open Policing has traffic stop data for several	https://openpolicing.stanford.edu/data/		
police departments with varying time horizons			
and variables			
Eviction Lab has eviction data at the block	https://evictionlab.org/get-the-data/		
group / tract level from 2000-2016	, , , , , , , , , , , , , , , , , , , ,		
Google maps data aggregating how visits to	https://www.google.com/covid19/mobility/index.html?hl=en		
places, such as grocery stores and parks, are			
changing in each geographic region since			
February 15, 2020 until today (3-4 days			
delay), compared to the same week of the day			
in January, 2020.			
World Inequality Database which allows you	https://wid.world/data/		
to download a customizable dataset. You are			
able to choose the indicators you want (per			
adult gdp, top 10% income share & dozens			
others), countries you want and date range			
that you want.			
The Humanitarian Data Exchange (HDX) is	https://data.humdata.org/		
an open platform for sharing data across			
crises and organizations. They host thousands			
of datasets including development indicator			
data, geospatial data, damage assessments,			
and more.			
World Bank publishes hundreds of different	https://data.worldbank.org/		
global development related datasets including			
datasets on World Development Indicators, all			
of World Bank's lending projects and access			
to sample survey data etc. Also able to search			
data by country or indicator.			
The City of Chicago publishes many different	https://data.cityofchicago.org/		
datasets, including ones on public finance,			
public safety, transportation, and education			
NYC also has an open data initiative that	https://opendata.cityofnewyork.us/		
aims to provide data from different agencies in			
one central platform. Data on ride-share			
programs can be found there as well, but of			
course, the public version			
List of datasets related to black lives and	https://www.kaggle.com/data/177628		
police violence. Kaggle is a platform for			
learning data science through competitions.			
police violence. Kaggle is a platform for	nups.//www.kaggic.com/data/111020		

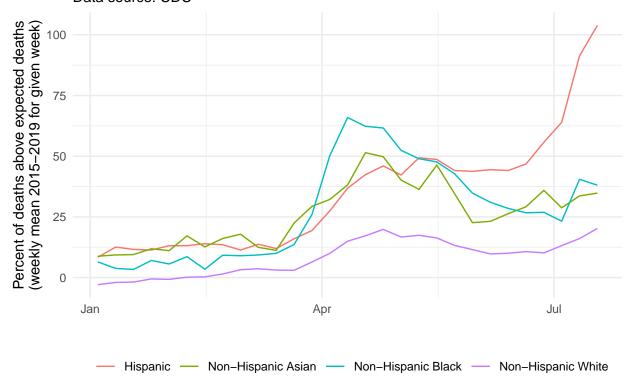
1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
https://data.fivethirtyeight.com/
https://www.propublica.org/datastore/
https://data.nber.org/data/
- ,,
https://datasetsearch.research.google.com/

Example project:

Introduction

I analyze weekly covid-19 data from the US Center for Disease Control. I show the extent to which racial disparities exist as measured by the percentage change in deaths in 2020 compared to 2015-2019. The plot below shows data for the United States except the tri-state area NY-NJ-CT. NYC is a large diverse city that was particularly hard hit by the coronavirus, so it is plausible that the racial disparities reported on are driven by those facts. The plot shows that NYC does not appear to drive the disparities. In the appendix, I examine the same question in states with high Latinx populations that experienced a covid-19 surge in the late summer (TX-CA-AZ-FL). And, I look at the least densely populated states.

The data description is found here: $https://www.cdc.gov/nchs/nvss/vsrr/covid_weekly/ \ The \ data \ can be \ downloaded \ directly \ from \ here: \ https://data.cdc.gov/api/views/qfhf-uhaa/rows.csv?accessType=DOWNLOAD&bom=true&format=true%20target=$


graph

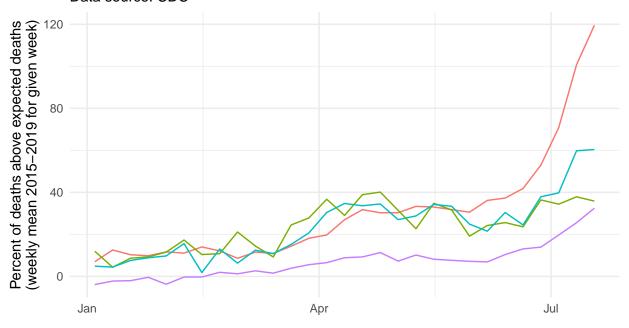
```
library(tidyverse)
covid data <-
  read_csv("../data/Weekly_counts_of_deaths_by_jurisdiction_and_race_and_Hispanic_origin.csv",
           col_types = cols(Suppress = col_character())) %>%
   mutate(week = `Week Ending Date`,
           race_ethnicity = `Race/Ethnicity`,
           n_deaths = `Number of Deaths`,
           diff = `Difference from 2015-2019 to 2020`,
           expected_deaths = n_deaths - diff,
           perc_diff = `Percent Difference from 2015-2019 to 2020`,
           year = MMWRYear,
           week_no = MMWRWeek,
           jurisdiction = Jurisdiction,
           state = `State Abbreviation`
           ) %>%
   filter('Time Period' == "2020", Outcome == "All Cause", Type != "Unweighted") %>%
    select(jurisdiction, state, week, year, week_no,
           race_ethnicity, n_deaths, expected_deaths, diff, perc_diff)
data_for_plot <-
covid_data %>%
  mutate(week = lubridate::mdy(week)) %>%
  filter(race_ethnicity %in%
          c("Hispanic", "Non-Hispanic White", "Non-Hispanic Black", "Non-Hispanic Asian")) %>%
  filter(! state %in% c("US", "NY", "YC", "NJ", "CT", "PR"), week_no <= 29) %>%
  group_by(race_ethnicity, week) %>%
  summarize(actual_deaths = sum(n_deaths, na.rm = TRUE),
            diff deaths = sum(diff, na.rm = TRUE),
            expected deaths = actual deaths - diff deaths,
            perc_above_expected = 100 * diff_deaths / expected_deaths)
```

`summarise()` has grouped output by 'race_ethnicity'. You can override using the `.groups` argument.

```
data_for_plot %>%
  ggplot(aes(x = week, color = race_ethnicity)) +
    geom_line(aes(y = perc_above_expected)) +
  theme_minimal() +
  labs(y = "Percent of deaths above expected deaths\n(weekly mean 2015-2019 for given week)",
        x = "",
        title = "Racial disparities of Covid-19, USA excluding NY-NJ-CT" ,
        subtitle = "Data source: CDC",
        color = "") +
  theme(legend.position = "bottom")
```

Racial disparities of Covid–19, USA excluding NY–NJ–CT Data source: CDC

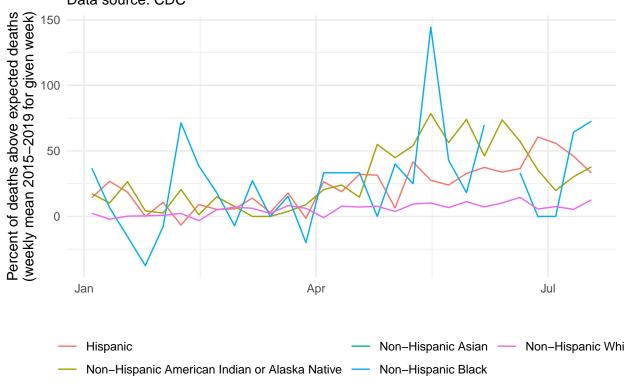
table


race_ethnicity	expected_deaths	total_additional_deaths	percent_diff
Hispanic	121787	54977	45.141928
Non-Hispanic American Indian or Alaska Native	10749	2335	21.722951
Non-Hispanic Asian	40741	14364	35.256867
Non-Hispanic Black	204431	61969	30.312917
Non-Hispanic White	1337231	130967	9.793895
Other	15094	2613	17.311515

Appendix

```
# We don't expect you to use functions. For this project it's acceptable to repeat code.
# As you grow as a programmer, when you find that you want to copy and paste a code block
# over and over again. It means it's time for a function or a loop. We'll discuss these
# in the fall.
data_for_plot <-
  function(states,
    ethnicities = c("Hispanic", "Non-Hispanic White", "Non-Hispanic Black", "Non-Hispanic Asian")) {
    covid_data %>%
      mutate(week = lubridate::mdy(week)) %>%
      filter(race_ethnicity %in% ethnicities) %>%
      filter(! state %in% "US", state %in% states, week_no <= 29) %>%
      group_by(race_ethnicity, week ) %>%
      summarize(actual_deaths = sum(n_deaths, na.rm = TRUE),
                diff_deaths = sum(diff, na.rm = TRUE),
                expected_deaths = actual_deaths - diff_deaths,
                perc_above_expected = 100 * diff_deaths / expected_deaths)
}
make_plot <- function(data_for_plot, title) {</pre>
    data_for_plot %>%
      ggplot(aes(x = week, color = race_ethnicity)) +
        geom_line(aes(y = perc_above_expected)) +
      theme minimal() +
      labs(y = "Percent of deaths above expected deaths\n(weekly mean 2015-2019 for given week)",
           x = "",
           title = glue::glue("Racial disparities of Covid-19 {title}"),
           subtitle = "Data source: CDC",
           color = "") +
      theme(legend.position = "bottom")
}
data_for_plot(c("AZ", "TX", "FL", "CA")) %>% make_plot("in TX-FL-AZ-CA")
```

`summarise()` has grouped output by 'race_ethnicity'. You can override using the `.groups` argument.


Racial disparities of Covid–19 in TX–FL–AZ–CA Data source: CDC

`summarise()` has grouped output by 'race_ethnicity'. You can override using the `.groups` argument.
Warning: Removed 29 row(s) containing missing values (geom_path).

Hispanic — Non-Hispanic Asian — Non-Hispanic Black — Non-Hispanic White

Racial disparities of Covid–19 low–population density states Data source: CDC

