The basics: 04 grouped analysis

Ari Anisfeld

9/8/2020

Questions

group_by and summarize

1. midwest is a data set that comes bundled with tidyverse. In an earlier lab you calculated the population of Ohio in the following way.
```
midwest %>%
    filter(state == "OH")
    summarize(total_population = sum(poptotal))
```

With group_by you can calculate the total population of all the states at once!
midwest \%>\%
group_by(...) \%>\%
summarize(total_population $=$ sum(poptotal))
2. For each state in the midwest data, calculate total area.
3. For each state in the midwest data, calculate the proportion of counties that are in a metro area (inmetro). ${ }^{1}$
4. For each state, calculate the proportion of people with a college degree and also with high school degrees.

- First, use mutate to calculate the number of people with the degree type.
- Then, use group_by and summarize to calculate the proportions.

group_by and mutate

1. Add a column to midwest called pop_state that equals the state population. Compare your result to what you calculated early.
```
# fill in the ... with approriate code
midwest %>%
    group_by( ... ) %>%
    mutate(pop_state = ... )
```

2. Building off the previous question, create a column that shows the number of people living below the poverty line (percbelowpoverty) in each county. Look at your results to make sure they make sense.
[^0]
count

1. Reproduce this table using count ().

\#\# \# A tibble: 2 x 2		
\#\#	inmetro	n
\#\#	<int>	<int>
\#\# 1	0	287
\#\# 2	1	150

2. Reproduce this table using add_count ().
```
## # A tibble: 6 x 3
## # Groups: inmetro [2]
## state inmetro n
## <chr> <int> <int>
## 1 IL 0 287
## 2 IL 0 287
## 3 IL 0 287
## 4 IL 1 150
## 5 IL 0 287
## 6 IL 0 287
# fill in the ... with the appropriate code.
midwest %>%
select(state, inmetro) %>%
... %>%
head()
```

1. Reproduce the following table

Want to improve this tutorial? Report any suggestions/bugs/improvements on here! We're interested in learning from you how we can make this tutorial better.

Solutions

```
1. midwest %>%
    group_by(state) %>%
    summarize(total_population = sum(poptotal))
```

2. midwest \%>\%
group_by(state) \%>\%
summarize(total_area $=$ sum(area))
3. midwest \%>\%
group_by (state) \%>\%
summarize(prop_in_metro = mean(inmetro))
4. midwest $\%>\%$
mutate (pop_with_hs = perchsd * poptotal,
pop_with_college $=$ percollege $*$ poptotal) $\%>\%$
group_by(state) \%>\%
summarize(total_population = sum(poptotal),
perc_with_hs = sum(pop_with_hs)/total_population, perc_with_college = sum(pop_with_college)/total_population,)
```
You might have been tempted to do it in the following way, but this underestimates the statewide ra
    midwest %>%
        group_by(state) %>%
        summarise(perc_with_hs = mean(perchsd))
```


group_by and mutate

1. midwest \%>\%
group_by(state) \%>\%
mutate(pop_state $=$ sum(poptotal))
2. A careful analyst would say this is wrong, because we do not know the poverty status of each and every person in the counties (see percpovertyknown). A challenge problem is to find the lower and upper bound on the number of people with poverty per county.
```
midwest %>%
    group_by(state) %>%
    mutate(pop_state = sum(poptotal),
            pop_below_poverty = pop_state * percbelowpoverty/100)
```


count

1. midwest \%>\%
count (inmetro)
\#\# \# A tibble: 2 x 2
\#\# inmetro n
\#\# <int> <int>
\#\# 10287
\#\# 21150
2. \# fill in the ... with the appropriate code.
midwest \%>\%
select(state, inmetro) \%>\%
add_count(inmetro) \%>\% head()
3. \#\# \# A tibble: 10 x 3
\#\# state inmetro n
\#\# <chr> <int> <int>
\#\# 1 IL $0 \quad 74$
\#\# 2 IL 1028
\#\# 3 IN $0 \quad 55$
\#\# 4 IN 1
\#\# 5 MI $0 \quad 58$
\#\# 6 MI 1
\#\# 7 OH 0
\#\# $8 \mathrm{OH} \quad 1 \quad 40$
\#\# 9 WI 0
\#\# 10 WI 1

[^0]: ${ }^{1}$ Recall that the mean() of a column of 0 and 1 s tell you the proportion of 1 s .

