
Lesson 3: Control flow with if and ifelse

Suggested Solutions

08/31/2021

Warm-up: Conditional statements and ifelse:

1. Without running the code, predict what the output will be. Then, see if you were right by running the
code in the console.

True or False

a. TRUE | FALSE
b. TRUE | (FALSE & FALSE)
c. TRUE | (10 < 4)
d. TRUE | (10 < 4 &)
e. TRUE | (4 > pi & 3 < pi & exp(1) >= 3 & 1e6 < 2ˆ30)
f. 4 > 2 | 2 > 4
g. What rule do these problems demonstrate?

Solution a. TRUE b. TRUE c. TRUE d. Error, (10 < 4 &) is an incomplete statement e. TRUE f. TRUE
g. OR (|) returns TRUE if at least one term is TRUE

True and False

a. TRUE & FALSE
b. TRUE & (FALSE & FALSE)
c. TRUE & (10 < 4)
d. TRUE & (10 < 4 &)
e. TRUE & (4 > pi & 3 < pi & exp(1) >= 3 & 1e6 < 2ˆ30)
f. 4 > 2 & 2 > 4
g. What rule do these problems demonstrate?

Solution a. FALSE b. FALSE c. FALSE d. Error, (10 < 4 &) is an incomplete statement e. FALSE
f. FALSE g. AND (&) returns TRUE only when both operands are TRUE

True and NA

1. There are a few times when NA are not contangious. Run the code and think about how this relates to
your findings above.
TRUE & NA
FALSE & NA
TRUE | NA
FALSE | NA

Solution
TRUE & NA

[1] NA

1

FALSE & NA

[1] FALSE
TRUE | NA

[1] TRUE
FALSE | NA

[1] NA

NA is valid logical object, and the results of statements including NA will evaluate to NA when the outcome is
ambiguous. Think of NA as an unknown.

TRUE & NA evaluates to NA because we do not know if NA represents a TRUE or FALSE statements, so the
outcome is ambiguous. If NA were a TRUE statement, then this example would evaluate to TRUE. If NA were a
FALSE statement, then this example would evaluate to FALSE.

FALSE & NA evaluates to FALSE because at least one of the statements is FALSE.

TRUE | NA evaluates to TRUE because at least one of the statements is TRUE.

FALSE | NA evaluates to NA again because we do not know if NA represents a TRUE or FALSE statements, so
the outcome is ambiguous. If NA were a TRUE statement, then this example would evaluate to TRUE. If NA
were a FALSE statement, then this example would evaluate to FALSE.

2. Without running the code, predict what the output will be. Then, see if you were right by running the
code in the console.
ifelse(TRUE, "yes", "no")
ifelse(FALSE, "yes", "no")
ifelse(c(TRUE, FALSE, TRUE, FALSE), "yes", "no")
ifelse(c(TRUE & FALSE,

FALSE | TRUE,
TRUE | TRUE,
FALSE & FALSE),

"yes", "no")
ifelse(c(NA, TRUE, FALSE), "yes", "no")
ifelse(c(NA, NA, TRUE, FALSE), "yes", "no")

Solution
ifelse(TRUE, "yes", "no")

[1] "yes"
ifelse(FALSE, "yes", "no")

[1] "no"
ifelse(c(TRUE, FALSE, TRUE, FALSE), "yes", "no")

[1] "yes" "no" "yes" "no"
ifelse(c(TRUE & FALSE,

FALSE | TRUE,
TRUE | TRUE,
FALSE & FALSE),
"yes", "no")

[1] "no" "yes" "yes" "no"

2

ifelse(c(NA, TRUE, FALSE), "yes", "no")

[1] NA "yes" "no"
ifelse(c(NA, NA, TRUE, FALSE), "yes", "no")

[1] NA NA "yes" "no"

Recall that ifelse() asks, “Does the statement in the first position evaluate to TRUE?” If it does, then return
what sits in the second position. If it does not, then return what sits in the third position. As always, NA will
be returned if the outcome of a statement is ambiguous.

If what sits in the first position is a vector, then repeat this process for every element of the vector one by
one.

Common uses of ifelse

1. Run the following code and you will see the distinct tier_names available in the dataset.
mrc_data %>% distinct(tier_name)

a. ifelse can be used to adjust entries in the tier_name column. Change “Two-year (public and
private not-for-profit)” to “Two-year (public and private)”.1

Fill in the ... with the appropriate code
mrc_data %>%

mutate(tier_name = ifelse(... , ..., tier_name))

Solution
mrc_data %>%

mutate(tier_name = ifelse(
tier_name == "Two-year (public and private not-for-profit)",
"Two-year (public and private)",
tier_name)) %>%

distinct(tier_name)

A tibble: 12 x 1
tier_name
<chr>
1 Two-year for-profit
2 Selective private
3 Nonselective four-year public
4 Four-year for-profit
5 Selective public
6 Two-year (public and private)
7 Nonselective four-year private not-for-profit
8 Highly selective private
9 Less than two-year schools of any type
10 Other elite schools (public and private)
11 Highly selective public
12 Ivy Plus

Notice that a good way to check if you’ve executed this correctly, is to call distinct() once again and see
for yourself if “Two-year (public and private not-for-profit)” is still a value for tier_name.

1Hint: In the first position, put a condition testing if tier_name matches the string. If it does, we replace the string with
“Two-year (public and private)”, otherwise keep the same data.

3

b. `ifelse` is often used to collapse tiers. Redefine `tier_name` so that "Nonselective four-year public" and "Nonselective four-year private not-for-profit" are grouped together as "Nonselective four-year (public and private)".^[Hint: The code will be very similar to the previous problem.]

Solution
mrc_data %>%

mutate(tier_name = ifelse(
tier_name == "Nonselective four-year public" |
tier_name == "Nonselective four-year private not-for-profit",
"Nonselective four-year (public and private)",
tier_name)) %>%

distinct(tier_name)

A tibble: 11 x 1
tier_name
<chr>
1 Two-year for-profit
2 Selective private
3 Nonselective four-year (public and private)
4 Four-year for-profit
5 Selective public
6 Two-year (public and private not-for-profit)
7 Highly selective private
8 Less than two-year schools of any type
9 Other elite schools (public and private)
10 Highly selective public
11 Ivy Plus

2. As you can see, there are 1466 colleges missing average SAT scores. Sometimes we want to replace NAs
with a value. For example, linear regressions will drop any row with NAs, and we might not want that.2

mrc_data %>%
summarise(missing_sat_2013 = sum(is.na(sat_avg_2013)))

A tibble: 1 x 1
missing_sat_2013
<int>
1 1466

To avoid dropping rows, sometimes people replace the NA with the mean and add a new column that is
an indicator of missingness. Using mutate() and ifelse(), fill NA in sat_avg_2013 with the average
SAT score of the other colleges and create a column called missing_sat_avg_2013 that is 1 if NA and
0 otherwise.3

Here’s a small example of what we expect. Try reproducing this example and then applying your code to
mrc_data.
before <- tibble(fake_data = c(1, 2, NA))
before

A tibble: 3 x 1
fake_data
<dbl>
1 1
2 2
3 NA

2I believe you’ll discuss missing data problems in stats I.
3Hint: First, make the indicator column. Hint 2: When replacing NA in the example, I used the following code to find the

mean mean(fake_data, na.rm = TRUE).

4

after

A tibble: 3 x 2
fake_data missing_fake_data
<dbl> <dbl>
1 1 0
2 2 0
3 1.5 1

Solution
mrc_data <- mrc_data %>%

mutate(missing_sat_avg_2013 = ifelse(
is.na(sat_avg_2013), 1, 0),

sat_avg_2013 = ifelse(
is.na(sat_avg_2013),
mean(sat_avg_2013, na.rm = TRUE),
sat_avg_2013))

mrc_data %>%
summarise(sum(is.na(sat_avg_2013)),

sum(missing_sat_avg_2013),
sum(sat_avg_2013 == mean(sat_avg_2013, na.rm = TRUE)))

A tibble: 1 x 3
`sum(is.na(sat_avg_2~ `sum(missing_sat_avg~ `sum(sat_avg_2013 == mean(sat_avg~
<int> <dbl> <int>
1 0 1466 1466

To check your work, you can use summarize() again. We see the following. There are no more NA values in
the sat_avg_2013 column. There are 1466 instances of a value 1 in missing_sat_avg_2013, which matches
the number of NA values were originally present in sat_avg_2013. There at 1466 instances of sat_avg_2013
equalling the mean of sat_avg_2013, so we can feel fairly confident that NA values were replaced by the
mean.
mrc_data %>%

summarise(missing_sat_2013 = sum(is.na(sat_avg_2013)))

A tibble: 1 x 1
missing_sat_2013
<int>
1 0

Extension: College choice:

This part is admittedly silly! Imagine the situation: It’s 2014 and a group of high school friends want to
go to college together. They need to find a college that meets all their preferences. Your job is to find the
perfect college.

Name SAT Score Preferences
A-plus Abdul 1430 Either ivy plus tier or a flagship school
Snooty Stephen 1450 not a public school
Nourishing Nancy 1590 school in the midwest so she can be near her

grandma

5

Name SAT Score Preferences
Radical Rei 1490 strong social studies (as measured by the

percentage of students majoring in social studies
> 30 percent)

Cost-conscious Casey 1600 wants a public school in CA or a school where
students from homes in the bottom 20th
percentile of incomes pay less than 10000 per year

Here are the rules. They want to go to school where their test scores are within 100 points of the school
average SAT score. To match their preferences, use the most recent data. You will need a few tools.

1. First, in order to understand what a column contains you can use distinct()4. For example, say you
are trying to figure out how to identify “ivy plus” schools (or what that specifically means). Using
names() you see their is a columns called tier_name.
mrc_data %>% distinct(tier_name)

A tibble: 12 x 1
tier_name
<chr>
1 Two-year for-profit
2 Selective private
3 Nonselective four-year public
4 Four-year for-profit
5 Selective public
6 Two-year (public and private not-for-profit)
7 Nonselective four-year private not-for-profit
8 Highly selective private
9 Less than two-year schools of any type
10 Other elite schools (public and private)
11 Highly selective public
12 Ivy Plus

We see there are 12 tiers and one is “Ivy Plus”! Note the capitalization.

2. Second, we’re going to have to find schools that match ranges of SAT scores. Welcome between().5

mrc_data %>% filter(1330 <= sat_avg_2013, sat_avg_2013 <= 1530)
mrc_data %>% filter(between(sat_avg_2013, 1330, 1530))

a. Figure out whether between() use < or <=?

Solution

As always, ?between is the first thing to do. In the R Documentation, you should see “This is a shortcut for
x >= left & x <= right, implemented efficiently in . . . ”
?between

You can also test things out in R. In this case, we see that the lower bound (1330) is included in the final
output. However, this way would not be helpful to tell whether between() use < or <= if there is no 1330
entry in the data.
mrc_data %>%

filter(between(sat_avg_2013, 1330, 1530)) %>%

4from dplyr. The codebook is also useful.
5from dplyr

6

summarize(min(sat_avg_2013),
max(sat_avg_2013))

A tibble: 1 x 2
`min(sat_avg_2013)` `max(sat_avg_2013)`
<dbl> <dbl>
1 1330 1518.

3. The final thing is a concept. You’re probably about to write code that looks like the following pseudo
code.6

This is pseudo code
mrc_data %>%

mutate(abdul_choices = ifelse(CONDITIONS, yes, no),
stephens_choices = ifelse(CONDITIONS, yes, no),
...) %>%

filter(abdul_choices == yes, stephens_choices == yes, ...)

We can avoid the extra == yes by making abdul_choices a logical vector. In other words, write code
like so:
This is pseudo code
mrc_data %>%

mutate(abdul_choices = ifelse(CONDITIONS, TRUE, FALSE),
stephens_choices = ifelse(CONDITIONS, TRUE, FALSE),
...) %>%

filter(abdul_choices, stephens_choices, ...)

b. Test out the concept with a simple example.7

Solution
mrc_data %>%

mutate(abdul_choices = ifelse(
tier_name == "Ivy Plus", TRUE, FALSE)) %>%

filter(abdul_choices) %>%
select(name,tier_name,abdul_choices,sat_avg_2013,flagship)

A tibble: 12 x 5
name tier_name abdul_choices sat_avg_2013 flagship
<chr> <chr> <lgl> <dbl> <dbl>
1 Brown University Ivy Plus TRUE 1440 0
2 Columbia University In The Cit~ Ivy Plus TRUE 1480 0
3 Cornell University Ivy Plus TRUE 1420 0
4 Dartmouth College Ivy Plus TRUE 1455 0
5 Duke University Ivy Plus TRUE 1460 0
6 Harvard University Ivy Plus TRUE 1505 0
7 Massachusetts Institute Of Tec~ Ivy Plus TRUE 1495 0
8 Princeton University Ivy Plus TRUE 1500 0
9 Stanford University Ivy Plus TRUE 1475 0
10 University Of Chicago Ivy Plus TRUE 1518. 0
11 University Of Pennsylvania Ivy Plus TRUE 1455 0
12 Yale University Ivy Plus TRUE 1505 0

4. Now you’re ready to find the college for the five friends.
6pseudo code is a term for fake code that captures the logic of some coding idea without being actual code.
7For example, try it with Abdul’s only condition being Ivy Plus.

7

fill in the ... with appropriate code

We'll give this a name so we can use it later.
bff_super_awesome_college_list <-
mrc %>%

mutate(abdul_choices = ifelse(between(sat_avg_2013, 1330, 1530) &
(tier_name == "Ivy Plus" | ...), TRUE, FALSE),

stephen_choices = ifelse(..., ..., ...),
nancy_choices = ifelse(..., ..., ...),
rei_choices = ifelse(..., ..., ...),
casey_choices = ifelse(..., ..., ...)
)

bff_super_awesome_college_list %>%
filter(abdul_choices, sam_choices, nancy_choices, rei_choices, casey_choices)

Solution
bff_super_awesome_college_list <- mrc_data %>%

mutate(abdul = ifelse(between(sat_avg_2013, 1330, 1530) &
(tier_name == "Ivy Plus" | flagship == 1),
TRUE, FALSE),

stephen = ifelse(between(sat_avg_2013, 1350, 1550) & public == 0,
TRUE, FALSE),

nancy = ifelse(between(sat_avg_2013, 1490, 1690) & region == 2,
TRUE, FALSE),

rei = ifelse(between(sat_avg_2013, 1390, 1590) & pct_socialscience_2000 > 30,
TRUE, FALSE),

casey = ifelse(between(sat_avg_2013, 1500, 1600) &
(public == 1 & state == "CA" | scorecard_netprice_2013 < 10000),
TRUE, FALSE))

c. What school(s) are acceptable to all five

Solution
bff_super_awesome_college_list %>%

filter(abdul, stephen, nancy, rei, casey) %>%
select(name,abdul, stephen, nancy, rei, casey)

A tibble: 1 x 6
name abdul stephen nancy rei casey
<chr> <lgl> <lgl> <lgl> <lgl> <lgl>
1 University Of Chicago TRUE TRUE TRUE TRUE TRUE
Alternative (notice it yields the same result)
bff_super_awesome_college_list %>%

filter(abdul & stephen & nancy & rei & casey) %>%
select(name,abdul, stephen, nancy, rei, casey)

A tibble: 1 x 6
name abdul stephen nancy rei casey
<chr> <lgl> <lgl> <lgl> <lgl> <lgl>
1 University Of Chicago TRUE TRUE TRUE TRUE TRUE

8

d. How many school(s) are available to any of the five. Adjust filter statement slightly.8

Solution
bff_super_awesome_college_list %>%

filter(abdul | stephen | nancy | rei | casey) %>%
nrow()

[1] 52

5. The five friends have NA in their choice sets. Do the the school list change if we replace all the NAs with
TRUE? Without coding, argue why the list will not change if we replace the NAs with FALSE.

Solution Yes, the school list will change if we replace all NAs with TRUE. The list will not change if we replace
NAs with FALSE since we are using the OR (|) operator, and this operator evaluates to TRUE so long as at
least one statement is TRUE.

6. Challenge Create a “Five friends college ranking”. A college is ranked 1 if it is acceptable to all 5
friends. 2 if it is acceptable to any 4 friends and so on.9 Colleges that are not acceptable to any friend
should be marked “Unranked”.

Solution 1

We take advantage of the fact that the arithmetic operation of booleans (TRUE and FALSE) works like 1’s
and 0’s. Since abdul, stephen, nancy, rei, and casey are logical vectors (vectors full of TRUEs and FALSEs),
we get the number of friends who would accept going to that school when we add across the rows which
represent schools. Finally, we use case_when to assign the rankings according to how many friends would
accept going to that school.
bff_super_awesome_college_list %>%

mutate(num_friends_accept = abdul + stephen + nancy + rei + casey,
rank = case_when(num_friends_accept == 5 ~ "1",

num_friends_accept == 4 ~ "2",
num_friends_accept == 3 ~ "3",
num_friends_accept == 2 ~ "4",
num_friends_accept == 1 ~ "5",
num_friends_accept == 0 ~ "Unranked")) %>%

arrange(rank) %>%
select(name, num_friends_accept, rank)

A tibble: 2,463 x 3
name num_friends_accept rank
<chr> <int> <chr>
1 University Of Chicago 5 1
2 Harvard University 4 2
3 Princeton University 4 2
4 Yale University 4 2
5 Brown University 3 3
6 Columbia University In The City Of New York 3 3
7 Dartmouth College 3 3
8 Duke University 3 3
9 Stanford University 3 3
10 University Of Pennsylvania 3 3
... with 2,453 more rows

Solution 2
8Hint: Think about the warm-up you did for this lab
93 if it is acceptable to 3 friends. 4 if acceptable to 2 friends and 5 if acceptable to 1 friend

9

Listing all the possible cases can be mundane when the number of cases is very large. There are two functions
that can be very helpful for this exercise: recode() and dense_rank(). If you are not sure what is going on
in the mutate() step, please see the simple example provided below.
bff_super_awesome_college_list %>%

mutate(num_friends_accept = abdul + stephen + nancy + rei + casey,
rank = recode(as.character(dense_rank(-num_friends_accept)),"6" = "Unranked")) %>%

arrange(rank) %>%
select(name, num_friends_accept, rank)

A tibble: 2,463 x 3
name num_friends_accept rank
<chr> <int> <chr>
1 University Of Chicago 5 1
2 Harvard University 4 2
3 Princeton University 4 2
4 Yale University 4 2
5 Brown University 3 3
6 Columbia University In The City Of New York 3 3
7 Dartmouth College 3 3
8 Duke University 3 3
9 Stanford University 3 3
10 University Of Pennsylvania 3 3
... with 2,453 more rows

Simple example

dense_rank() in dplyr can give you continuous ranks.
simple.example <- c(5,2,1,4,3)
dense_rank(simple.example)

[1] 5 2 1 4 3

This is a common trick to obtain the descending ranks.
dense_rank(-simple.example)

[1] 1 4 5 2 3

What if we want to label the last rank (which is 5 in this case) with “Last”? In the lecture, Ari has showed
your an example where R cannot handle “numeric” and “character” type entries in the same column. To
update the label with characters, let’s first convert the numeric ranks into characters.
simple.rank <- as.character(dense_rank(-simple.example))

Finally, let’s relabel 5 with "Last". N.B. There are many other ways to do so.
recode(simple.rank, "5"="Last")

[1] "1" "4" "Last" "2" "3"

10

	Warm-up: Conditional statements and ifelse:
	Common uses of ifelse
	Extension: College choice:

