The basics: 02 Vectors and data types

Ari Anisfeld
9/8/2020

Questions

Create vectors

1. In the lecture, we covered $c(),:$ rep(), seq() among other ways to create vectors.
dolly <- c $(9,10,11,12,13,14,15,16,17)$
bees <- c("b", "b", "b", "b", "b")

- Recreate dolly using :.
- Create the same vector using seq().
- Recreate bees using rep().

Random vectors

1. In the lecture, we also created vectors using rnorm() and runif().
```
random_norm <- rnorm(100)
random_unif <- runif(1000)
```

- How long are the vectors random_norm and random_unif? Use length() to verify.
- What are the largest and smallest values in random_norm and random_unif? Use min() and $\max ()$.
- Use mean() and $\operatorname{sd}()$ to calculate the mean and standard deviation of the two distributions.
- Create a new vector with 10000 draws from the standard normal distribution.
- rnorm() by default sets mean $=0$ (see ?rnorm). Create a vector of 10000 draws from the normal distribution with mean $=1$. Use mean() to verify.

Notice the functions $\min (), \max (), \operatorname{mean}()$ and $s d()$ all take a vector with many values and summarize them as one value. These are good to use with summarize() when doing data analysis on tibbles.

data types

- Use typeof() to verify the data types of dolly, bees, random_unif
- Coerce dolly to a character vector. Recall we have functions as.<type>() for this kind of coercion.
- Try to coerce bees to type numeric. What does R do when you ask it to turn "b" into a number?

vectorized math

a and b are vectors of length 10 . Look at them in the console.

```
a <- 1:10
b <- rep(c(2, 4), 5)
```

1. Add a and b element by element.
2. Subtract a and b element by element.
3. Divide a by b element by element.
4. Multiply a and b element by element.
5. Raise the element of a to the power of b element by element.
6. Multiply each element of a by 3 then subtract b
7. Raise each element of b to the third power.
8. Take the square root of each element of a.

vectorized comparison

1. Run the following code and make sure you understand the output.
$\mathrm{a}>\mathrm{b}$
```
## [1] FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
a == b
## [1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
```


creating tibbles with vectors

1. Create a tibble with columns called a and b where a is the numbers 1 to 100 and b is 100 random numbers from the standard normal distribution.
```
my_tibble<-
tibble(
    a = ...,
    b = ...
)
```


subsetting

midwest is a data set that comes with ggplot.
\# try this to see midwest data
library (tidyverse)
midwest \%>\% head()

1. Use pull() to get the vector of state names.
2. Use [[to get a vector of state names. This is baseR and requires (normal) quotes around column names.
3. Use select() to get a tibble with state as the only column.
4. Use [to get a tibble with state as the only column

Solutions

Create vectors

```
dolly_colon <- 9:17
dolly_seq <- seq(9:17)
bees_rep <- rep("b", 5)
```


Random vectors

```
# lengths
length(random_norm)
## [1] 100
length(random_unif)
## [1] 1000
# largest and smallest values (repeat with random_unif)
max(random_norm)
## [1] 2.19117
min(random_norm)
## [1] -2.073629
# mean and sd (repeat with random_unif)
mean(random_norm)
## [1] 0.05655819
sd(random_norm)
## [1] 1.027318
# rnorm with length 10000
longer_rnorm <- rnorm(10000)
# mean = 1
rnorm_centered_on_one <- rnorm(10000, mean = 1)
```


typeof

```
typeof(dolly)
## [1] "double"
typeof(bees)
## [1] "character"
typeof(random_unif)
## [1] "double"
```

```
# notice dolly is int if it's created by : or seq
typeof(dolly_seq)
## [1] "integer"
typeof(dolly_colon)
## [1] "integer"
# coercion
as.character(dolly)
## [1] "9" "10" "11" "12" "13" "14" "15" "16" "17"
# R coerces "b" to NA because there is
# not a natural number to replace "b" with
as.numeric(bees)
## Warning: NAs introduced by coercion
## [1] NA NA NA NA NA
```


vectorized math

$a+b$
\#\# [1] $\begin{array}{lllllllllll}3 & 6 & 5 & 8 & 7 & 10 & 9 & 12 & 11 & 14\end{array}$
a - b

```
## [1] -1 -2 1. 1
```

a / b

```
## [1] 0.5 0.5 1.5 1.0 2.5 1.5 3.5 2.0 4.5 2.5
```

a * b
\#\# [1] $\quad 2 \begin{array}{llllllllll} & 8 & 6 & 16 & 10 & 24 & 14 & 32 & 18 & 40\end{array}$
a - b

```
## [1] 
2 * a - b
## [1] 0 0 0 4 4 4 % 8 8 12 12 16 16
b - 3
## [1] 8 64 8 64 8 64 84 64 8 64
sqrt(a)
## [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751 2.828427
## [9] 3.000000 3.162278
```


Creating tibbles

```
my_tibble<-
```

tibble(

```
    a = seq(1, 100),
    b = rnorm(100)
)
```

midwest \% \% \% pull (state)
\#\# [1] "IL" "IL"
\#\# [16] "IL" "IL"
\#\# [31] "IL" "IL"
\#\# [46] "IL" "IL"
\#\# [61] "IL" "IL"
\#\# [76] "IL" "IL"
\#\# [91] "IL" "IN" "IN" "IN"
\#\# [106] "IN" "IN"
\#\# [121] "IN" "IN"
\#\# [136] "IN" "IN"
\#\# [151] "IN" "IN"
\#\# [166] "IN" "IN"
\#\# [181] "IN" "MI"
\#\# [196] "MI" "MI"
\#\# [211] "MI" "MI"
\#\# [226] "MI" "MI"
\#\# [241] "MI" "MI"
\#\# [256] "MI" "MI"
\#\# [271] "MI" "MI" "MI" "MI" "MI" "MI" "MI" "OH" "OH" "OH" "OH" "OH" "OH" "OH" "OH"
\#\# [286] "OH" "OH"
\#\# [301] "OH" "ОН" "OH" "OH"
\#\# [316] "OH" "OH"
\#\# [331] "OH" "OH"
\#\# [346] "OH" "OH"
\#\# [361] "OH" "OH" "OH" "OH" "OH" "WI" "WI" "WI" "WI" "WI" "WI" "WI" "WI" "WI" "WI"
\#\# [376] "WI" "WI"
\#\# [391] "WI" "WI"
\#\# [406] "WI" "WI"
\#\# [421] "WI" "WI"
\#\# [436] "WI" "WI"
midwest[["state"]]
\#\# [1] "IL" "IL"
\#\# [16] "IL" "IL"
\#\# [31] "IL" "IL"
\#\# [46] "IL" "IL"
\#\# [61] "IL" "IL"
\#\# [76] "IL" "IL"
\#\# [91] "IL" "IN" "IN" "IN"
\#\# [106] "IN" "IN"
\#\# [121] "IN" "IN"
\#\# [136] "IN" "IN"
\#\# [151] "IN" "IN"
\#\# [166] "IN" "IN"
\#\# [181] "IN" "MI"
\#\# [196] "MI" "MI"
\#\# [211] "MI" "MI"
\#\# [226] "MI" "MI"

```
## [241] "MI" "MI"
## [256] "MI" "MI"
## [271] "MI" "MI" "MI" "MI" "MI" "MI" "MI" "OH" "OH" "OH" "OH" "OH" "OH" "OH" "OH"
## [286] "OH" "OH"
## [301] "OH" "OH"
## [316] "OH" "OH"
## [331] "OH" "OH"
## [346] "OH" "OH"
## [361] "OH" "OH" "OH" "OH" "OH" "WI" "WI" "WI" "WI" "WI" "WI" "WI" "WI" "WI" "WI"
## [376] "WI" "WI"
## [391] "WI" "WI"
## [406] "WI" "WI"
## [421] "WI" "WI"
## [436] "WI" "WI"
midwest %>% select(state)
## # A tibble: 437 x 1
## state
## <chr>
## 1 IL
## 2 IL
## 3 IL
## 4 IL
## 5 IL
## 6 IL
## 7 IL
## 8 IL
## 9 IL
## 10 IL
## # ... with 427 more rows
midwest[,"state"]
## # A tibble: 437 x 1
## state
## <chr>
## 1 IL
## 2 IL
## 3 IL
## 4 IL
## 5 IL
## 6 IL
## 7 IL
## 8 IL
## 9 IL
## 10 IL
## # ... with 427 more rows
```

Want to improve this tutorial? Report any suggestions/bugs/improvements on here! We're interested in learning from you how we can make this tutorial better.

