
Lab Session 1: Read and manipulate data

Solutions

9/8/2020

Working with data and scripts (To be covered during Q&A session)

In this section you will have set-up a directory structure for coding lab and started a script that reads in
your data.
library(tidyverse)
library(readxl)

you should set working directory here to your data folder
as instructed.
setwd(...your_dir...)

wid_data <- read_xlsx("world_wealth_inequality.xlsx")

Warm-up

1. Create a new R script and add code to load the tidyverse.

2. Your stats 1 partner comes to you and says they can’t get data to load after restarting R. You see the
code:
install.packages("haven")
awesome_data <- read_dta("awesome_data.dta")

Error in read_dta("awesome_data.dta") :
could not find function "read_dta"

a. Diagnose the problem.

Note: If they say the code worked before, it’s likely they had loaded haven in the console or perhaps in
an earlier script. R packages will stay attached as long as the R session is live.

Solution:

Could not find function “read_dta” since the “read_dta” function is from the ‘haven’ package but we have
yet to load the ‘haven’ package.

3. In general, once you have successfully used install.packages(pkg) for a “pkg”, you won’t need to do
it again. Install haven and readxl using the console.

4. In your script, load haven. Notice that if you had to restart R right now. You could reproduce the entire
warm-up by running the script. We strive for reproducibility by keeping the code we want organized in
scripts or Rmds.

1

5. It’s good practice when starting a new project to clear your R environment. This helps you make sure
you are not relying on data or functions you wrote in another project. After you library() statements
add the following code rm(list = ls()).

Solution: Now your script looks like:
library(tidyverse)
library(readxl)
library(haven)
rm(list = ls())

you should set working directory here to your data folder
as instructed.
setwd(...your_dir...)

wid_data_raw <-
read_xlsx("world_wealth_inequality.xlsx",

col_names = c("country", "indicator", "percentile", "year", "value")) %>%
separate(indicator, sep = "[\\r]?\\n", into = c("row_tag", "type", "notes"))

6. rm() is short for remove. Find the examples in ?rm and run them in the console.
#run

tmp <- 1:4
work with tmp and cleanup
rm(tmp)

Not run:
remove (almost) everything in the working environment.
You will get no warning, so don't do this unless you are really sure.
rm(list = ls())

Examining ‘wid_data

1. Look at the data. What is the main problem here?

2. We don’t have columns headers. The World Inequality Database says the “structure” of the download
is as shown in the image below.

So we can create our own header in read_xlsx.
wid_data_raw <-

read_xlsx("world_wealth_inequality.xlsx",
col_names = c("country", "indicator", "percentile", "year", "value"))

Now when we look at the second column. It’s a mess. We can seperate it based on where the \n are and
then deal with the data later. Don’t worry about this code right now.
wid_data_raw <-

read_xlsx("world_wealth_inequality.xlsx",
col_names = c("country", "indicator", "percentile", "year", "value")) %>%

separate(indicator, sep = "\\n", into = c("row_tag", "type", "notes"))

NOTE: We want a clean reproducible script so you should just have one block of code reading the data: that
last one. The other code were building blocks. If you want to keep “extra” code temporarily in your script
you can use # to comment out the code.

2

Manipulating world inequality data with dplyr (20 - 25 minutes)

Now we have some data and are ready to use select(), filter(), mutate(), summarize() and arrange()
to explore it.

1. The data comes with some redundant columns that add clutter when we examine the data. What
dplyr verb let’s you choose what columns to see? Remove the unwanted column row_tag and move
notes to the last column position and assign the output to the name wid_data.1

Solutions:

The relevant ‘dplyr’ verb is the select function
wid_data <- wid_data_raw %>%

select(-notes, everything()) %>%
select(-row_tag)

2. Let’s start to dig into the data. We have two types of data: “Net personal wealth” and “National
income”. Start by filter()ing the data so we only have “Net personal wealth” for France, name the
resulting data french_data and then run the code below to visualize the data.

french_data <- wid_data %>%
filter(type == "Net personal wealth", country == "France")

Note: When referring to words in the data, make sure they are in quotes “France”, “Net personal wealth”.
When referring to columns, do not use quotes. We’ll talk about data types in the next lecture.
french_data %>%

ggplot(aes(y = value, x = year, color = percentile)) +
geom_line()

1Hint: You can type all the column names or use the slicker select(-notes, everything())

3

0.00

0.25

0.50

0.75

1900 1925 1950 1975 2000
year

va
lu

e

percentile

p0p50

p50p90

p90p100

p99p100

Now we’re getting somewhere! The plot shows the proportion of national wealth owned by different segments
of French society overtime. For example in 2000, the top 1 percent owned roughly 28 percent of the wealth,
while the bottom 50 percent owned about 7 percent.

3. Explain the gaps in the plot. Using filter(), look at french_data in the years between 1960 and
1970. Does what you see line up with what you guessed by looking at the graph?

Solutions:

After filtering the french_data to between 1960 and 1970, we can see that there are missing values in the
value column thus explaining the gaps in the plot
french_data %>%

filter (year >= 1960 & year <= 1970)

4. Using mutate(), create a new column called perc_national_wealth that equals value multiplied by
100. Adjust the graph code so that the y axis shows perc_national_wealth instead of value.

Solutions:
french_data <- french_data %>%

mutate(perc_national_wealth = value * 100)

french_data %>%
ggplot(aes(y = perc_national_wealth, x = year, color = percentile)) +
geom_line()

4

0

25

50

75

1900 1925 1950 1975 2000
year

pe
rc

_n
at

io
na

l_
w

ea
lth

percentile

p0p50

p50p90

p90p100

p99p100

5. Now following the same steps, explore data from the “Russian Federation”.

Solutions:
russian_data <-

wid_data %>%
filter(type == 'Net personal wealth', country == 'Russian Federation') %>%
mutate(perc_national_wealth = value * 100)

russian_data %>%
ggplot(aes(y = perc_national_wealth, x = year, color = percentile)) +
geom_line()

5

20

40

60

1900 1925 1950 1975 2000
year

pe
rc

_n
at

io
na

l_
w

ea
lth

percentile

p0p50

p50p90

p90p100

p99p100

6. The data for “Russian Federation” does not start in 1900, but our y-axis does. That’s because we have
a bunch of NAs. Let’s filter out the NAs and remake the plot. You cannot test for NA using == (Try: NA
== NA). Instead we have a function called is.na(). (Try: is.na(NA) and !is.na(NA)).

Solution:

After filtering out all NA values, we plot the same graph again and see that the russia_data starts in the
year 1995.
russian_data <- russian_data %>% filter(!is.na(perc_national_wealth))

russian_data %>%
ggplot(aes(y = perc_national_wealth, x = year, color = percentile)) +
geom_line()

6

20

40

60

1995 2000 2005 2010 2015
year

pe
rc

_n
at

io
na

l_
w

ea
lth

percentile

p0p50

p50p90

p90p100

p99p100

7. Use two dplyr verbs to figure out what year the bottom 50 percent held the least wealth. First,
choose the rows that cover the bottom 50 percent and then sort the data in descending order using
arrange().2.

Solutions:

2011 was the year that the bottom 50 percent held the least wealth as it has the smallest value
russian_data %>%

filter(percentile == 'p0p50') %>%
arrange(value)

A tibble: 21 x 7
country type percentile year value notes perc_national_we~
<chr> <chr> <chr> <dbl> <dbl> <chr> <dbl>
1 Russian Fed~ Net person~ p0p50 2011 0.0342 Bottom 50~ 3.42
2 Russian Fed~ Net person~ p0p50 2010 0.0349 Bottom 50~ 3.49
3 Russian Fed~ Net person~ p0p50 2015 0.0349 Bottom 50~ 3.49
4 Russian Fed~ Net person~ p0p50 2012 0.0367 Bottom 50~ 3.67
5 Russian Fed~ Net person~ p0p50 2013 0.0383 Bottom 50~ 3.83
6 Russian Fed~ Net person~ p0p50 2014 0.0384 Bottom 50~ 3.84
7 Russian Fed~ Net person~ p0p50 2008 0.0494 Bottom 50~ 4.94
8 Russian Fed~ Net person~ p0p50 2009 0.0510 Bottom 50~ 5.10
9 Russian Fed~ Net person~ p0p50 2004 0.0555 Bottom 50~ 5.55
10 Russian Fed~ Net person~ p0p50 2007 0.0568 Bottom 50~ 5.68
... with 11 more rows

8. For both the Russian Federation and French data, calculate the average proportion of wealth owned by
2Hint: Look at the examples in ?arrange

7

the top 10 percent over the period from 1995 to 2010. You’ll have to filter and then summarize with
summarize().

Solution:

For the French data
french_data %>%

filter(percentile == "p90p100") %>%
filter(between(year, 1995, 2010)) %>%
summarize(top10 = mean(value))

A tibble: 1 x 1
top10
<dbl>
1 0.544

For the Russian data
russian_data %>%

filter(percentile == "p90p100") %>%
filter(between(year, 1995, 2010)) %>%
summarize(top10 = mean(value))

A tibble: 1 x 1
top10
<dbl>
1 0.633

Manipulating midwest demographic data with dplyr

1. Now we’ll use midwestern demographic data which is here. The dataset includes county level data for a
single year. We call data this type of data “cross-sectional” since it gives a point-in-time cross-section
of the counties of the midwest. (The world inequality data is “timeseries” data).

2. Save midwest.dta in your data folder and load it into R.3

Solution:
midwest <- read_dta('midwest.dta')

3. Run the following code to get a sense of what the data looks like:
glimpse(midwest)

4. I wanted a tibble called midwest_pop that only had county identifiers and the 9 columns from midwest
concerned with population counts. Replicate my work to create midwest_pop on your own.

Hint 1: I went to ?select and found a selection helper that allowed me to select those 9 colums without
typing all their names.4

Solutions:
midwest_pop <-

midwest %>%
select(county, state, starts_with("pop"))

3Hint: read_dta()
4Hint 2: notice that all the columns start with the same few letters.

8

https://github.com/harris-coding-lab/harris-coding-lab.github.io/raw/master/data/midwest.dta

names(midwest_pop)

[1] "county" "state" "poptotal" "popdensity"
[5] "popwhite" "popblack" "popamerindian" "popasian"
[9] "popother" "popadults" "poppovertyknown"

5. From midwest_pop calculate the area of each county.5 What’s the largest county in the midwest? How
about in Illinois?

Solutions:

Largest county in the midwest: Marquette
midwest_pop %>%

mutate(area = poptotal/popdensity) %>%
arrange(desc(area)) %>%
select(c(county, state, area))

A tibble: 437 x 3
county state area
<chr> <chr> <dbl>
1 MARQUETTE MI 110.
2 MARATHON WI 94.0
3 BAYFIELD WI 89.0
4 MARINETTE WI 82.0
5 SAWYER WI 79.0
6 DOUGLAS WI 78.0
7 CHIPPEWA MI 78.0
8 ONTONAGON MI 78.0
9 SCHOOLCRAFT MI 75.0
10 PRICE WI 75
... with 427 more rows

Largest county in IL: Mclean and La Salle
midwest_pop %>%

filter(state=='IL') %>%
mutate(area = poptotal/popdensity) %>%
arrange(desc(area)) %>%
select(c(county, state, area))

A tibble: 102 x 3
county state area
<chr> <chr> <dbl>
1 MCLEAN IL 68.0
2 LA SALLE IL 68
3 IROQUOIS IL 67.0
4 LIVINGSTON IL 62.0
5 COOK IL 58.0
6 CHAMPAIGN IL 58.0
7 FULTON IL 52.0
8 VERMILION IL 52
9 ADAMS IL 52.0
10 SANGAMON IL 51.0
... with 92 more rows

5Notice that popdensity = poptotal
area

9

6. From midwest_pop calculate percentage adults for each county. What county in the midwest has the
highest proportion of adults? What’s county in the midwest has the lowest proportion of adults?

Solution:

Highest proportion of adults: Keweenaw
midwest_pop %>%

mutate(perc_adults = popadults/poptotal) %>%
arrange(desc(perc_adults)) %>%
select(c(county, state, perc_adults))

A tibble: 437 x 3
county state perc_adults
<chr> <chr> <dbl>
1 KEWEENAW MI 0.757
2 ROSCOMMON MI 0.730
3 IRON MI 0.728
4 ALCONA MI 0.726
5 ADAMS WI 0.726
6 VILAS WI 0.724
7 IRON WI 0.723
8 MONTMORENCY MI 0.703
9 ONTONAGON MI 0.700
10 ONEIDA WI 0.699
... with 427 more rows

Lowest proportion of adults: Isabella
midwest_pop %>%

mutate(perc_adults = popadults/poptotal) %>%
arrange(perc_adults) %>%
select(c(county, state, perc_adults))

A tibble: 437 x 3
county state perc_adults
<chr> <chr> <dbl>
1 ISABELLA MI 0.485
2 MENOMINEE WI 0.494
3 ATHENS OH 0.507
4 MECOSTA MI 0.509
5 MONROE IN 0.526
6 JACKSON IL 0.527
7 TIPPECANOE IN 0.529
8 MCDONOUGH IL 0.533
9 DE KALB IL 0.537
10 HOLMES OH 0.541
... with 427 more rows

7. How many people live in Michigan?

Solution:
midwest_pop %>%

filter(state=='MI') %>%
summarize(totalpop = sum(poptotal))

A tibble: 1 x 1
totalpop

10

<int>
1 9295297

8. What’s the total area of Illinois? What are the units?6 If the units don’t align with other sources, can
this data still be useful?

Solution:

The data doesn’t seem to allign with other sources from Google. It is possible that the way that the dataset
calculates the population density is different from how we conventionally think about it. It is likely that
the dataset used a different formula than total population/total area (for instance, total population/total
inhabitable land area).
midwest_pop %>%

filter(state=='IL') %>%
mutate(area = poptotal/popdensity) %>%
summarise(totalarea = sum(area))

A tibble: 1 x 1
totalarea
<dbl>
1 3304.

6Unless you have a great intuition about how large IL is in several metrics, this question requires googling.

11

	Working with data and scripts (To be covered during Q&A session)
	Warm-up
	Examining `wid_data
	Manipulating world inequality data with dplyr (20 - 25 minutes)
	Manipulating midwest demographic data with dplyr

