
Fall Lab 1

10/4/2021

Warm up

1. How would you install the haven package? Do it now.

install.packages("haven")

2. In the videos, you learned about head(). What if you wanted to get the tail end of your data instead?

tail() returns the end of the data frame.

tail(cars)

## speed dist
## 45 23 54
## 46 24 70
## 47 24 92
## 48 24 93
## 49 24 120
## 50 25 85

3. Recall our dplyr verbs. What is the purpose of each function?

mutate() : Adds or changes an existing column in the data frame

filter() : Removes rows/observations based on a column or columns

select() : Keeps or removes specified columns from the data frame

arrange() : Sorts the data frame by a column or column

summarize() : Collapse the data frame into aggregated information for specified columns (sum, mean,
median, etc.)

and soon we’ll add:

group_by() : Used with mutate or summarize, to collapse the data frame by smaller groups

4. Imagine you have a data set, df with 4 variables, county, year, income, and employment. You only need
the year and employment status of people whose income is below $5000. Which two dplyr commands
do you need to do this? Can you write the code for this?

df %>%
filter(income < 5000) %>%
select(year, employment)
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5. Remember the mean() function from last time? What dplyr commands would we need if we want the
average income? How many rows will the resulting dataset be?

df %>%
summarise(mean = mean(income))

The dataframe is 1 row.

Working with data and scripts

We recommend a file structure for coding lab. If you have your own preferred way of organizing code feel
free to follow it.

Setting up working directory and coding environment

1. Do you have a folder on your computer for coding lab material? If not, create one and make sure you
know the path to the folder.

2. We recommend creating a problem_set folder inside your coding lab folder.

3. Make folder called data inside the problem_set folder.

Putting your files in place

4. Create a new R script. Save your script in the problem_set folder. From now on, when you start a
script or Rmd save it there.

5. Download the first data set from bit.ly/fall_lab_1 and put the data in your data folder.

Tell R where to find files

Local paths are like addresses on your computer.

Use getwd() to see how your computer makes addresses.

6. Add a line to your script where you setwd() to your problem set folder.

setwd("C:/Users/johnt/Google Drive...")

Working with the files

7. Finally, we are using data in an excel format. We need the package readxl to process data of this type.
In the console, run install.packages(“readxl”).

install.packages("readxl")

8. Add code to load the tidyverse.
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library(tidyverse)

## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --

## v ggplot2 3.3.3 v purrr 0.3.4
## v tibble 3.1.0 v dplyr 1.0.5
## v tidyr 1.0.2 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.5.0

## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()

library(readxl)

9. If you did everything correctly you should be able to run the following code:

fed_data <- read_xlsx("data/area_report_by_year.xlsx")

## New names:
## * ‘‘ -> ...2
## * ‘‘ -> ...3

The path is relative to your working directory. R looks for a data folder in your working directory and
then for the data file in that folder. You could also give R an absolute file path, such as: “Users/John
Smith/Coding Lab/problem_sets/data/area_report_by_year.xlsx”.

However, note that this absolute path wouldn’t work in someone else’s computer, and also wouldn’t work if
John decides to move his Coding Lab files elsewhere, while the relative path will work just fine as long as
the working directory is set.

Analyzing Student Debt

When you open fed_data you notice there are some issues! First, we will walk you through our code we
wrote to clean our data. We’re including it here so you can see what our data prep looks like, but we don’t
expect you to know all of the functions in here yet! Then, you will analyze the data.

Data Cleaning

library(tidyverse)
library(readxl)
student_loan_debt <- read_xlsx("Data/area_report_by_year.xlsx", sheet = "studentloan", skip = 3) %>%

filter(state != "allUS") %>%
pivot_longer(cols = -state, names_to = "year", values_to = "per_capita_student_debt") %>%
mutate(year = str_sub(year, 4, 7),
year = as.numeric(year))

write_csv(student_loan_debt, "student_loan_debt.csv")
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What’s going on here?

library(tidyverse)
library(readxl)

We load the packages that have the functions we need: tidyverse and readxl.

student_loan_debt <- read_xlsx("Data/area_report_by_year.xlsx",
sheet = "studentloan", skip = 3)

1. We tell our read_xlsx function to go to the data folder where we have the data, then to
“area_report_by_year.xlsx”, so that it can find the data. We specify the sheet in the Excel
workbook we want to read, and we skip the first 3 rows in the sheet, because the data we’re interested
in starts on line 4.

filter(state != "allUS")

2. We filter out rows of data that are for the entire US, leaving only rows that refer to states.

pivot_longer(cols = -state, names_to = "year", values_to = "per_capita_student_debt")

3. We convert the data from a wide to a long format, so that year is a variable and per_capita_student_debt
is also a variable. (The reason we do this is so that it is easier for functions in the “tidyverse” to
process this type of data for groupwise calculations, e.g. mean debt by year, etc. Read more about
tidy data in R for Data Science.)

mutate(year = str_sub(year, 4, 7),
year = as.numeric(year))

4. We use string manipulation to modify the existing year column, and then we convert the type of the
column.

What was the original type of the year column? What is the new type of the year column?

The type was originally string, and now it is a numeric.

write_csv(student_loan_debt, "student_loan_debt.csv")

5. We write the cleaned data to a CSV (comma-separated variables file).

Try running this code locally on your computer! Copy the code to a new script, and save it to the same folder
that you’ve stored your downloaded data in. Make sure to set your new folder as your “working directory”
correctly.

Exploratory Data Analysis

Ok, now that we’ve gone over how the file was created, load the cleaned data in your own R session. If you
had trouble with read_xls, we have the csv with the cleaned code here
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# library(readr)
# library(dplyr)
student_loan_debt <- read_csv("student_loan_debt.csv")

To look at your data after reading it in, you can use a tidyverse function called glimpse(). This is a nicer
version of a function called str(). Try running both str() and glimpse() on student_loan_debt.

student_loan_debt %>%
str()

## tibble [832 x 3] (S3: tbl_df/tbl/data.frame)
## $ state : chr [1:832] "AK" "AK" "AK" "AK" ...
## $ year : num [1:832] 2003 2004 2005 2006 2007 ...
## $ per_capita_student_debt: num [1:832] 680 1730 1910 2250 2340 2530 2850 3140 3390 3680 ...

student_loan_debt %>%
glimpse()

## Rows: 832
## Columns: 3
## $ state <chr> "AK", "AK", "AK", "AK", "AK", "AK", "AK", "AK"~
## $ year <dbl> 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010~
## $ per_capita_student_debt <dbl> 680, 1730, 1910, 2250, 2340, 2530, 2850, 3140,~

Note: student_loan_debt can be long to type, so use Tab-Autocomplete. Once you start typing the variable
in the function, press Tab and wait for the variable name to automatically pop up. Press Enter to fill in
student_loan_debt (or click on it).

Arranging Data

We can use the arrange() function from dplyr to sort the student loan data. The syntax is arrange(data,
variable). Arrange the data in student_loan_debt by per_capita_student_debt. (Can you sort the other
way?)

student_loan_debt %>%
arrange(per_capita_student_debt) %>%
head()

## # A tibble: 6 x 3
## state year per_capita_student_debt
## <chr> <dbl> <dbl>
## 1 PR 2003 500
## 2 PR 2004 650
## 3 WY 2003 670
## 4 AK 2003 680
## 5 AR 2003 710
## 6 SC 2003 710

If we want to sort in descending order:
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student_loan_debt %>%
arrange(desc(per_capita_student_debt)) %>%
head()

## # A tibble: 6 x 3
## state year per_capita_student_debt
## <chr> <dbl> <dbl>
## 1 DC 2018 13320
## 2 DC 2017 12380
## 3 DC 2016 12200
## 4 DC 2015 11780
## 5 DC 2014 11260
## 6 DC 2013 10880

Hint: Look up the arrange() documentation with ?arrange to figure out how to reverse the order of the sort.
The examples at the bottom of the help screen are useful, and you can run them directly in R, if it helps!

Who had the lowest per capita debt in 2003? How much was the lowest per capita debt in 2003?

student_loan_debt %>%
filter(year == 2003)%>%
arrange(per_capita_student_debt) %>%
head(1)

## # A tibble: 1 x 3
## state year per_capita_student_debt
## <chr> <dbl> <dbl>
## 1 PR 2003 500

How much was the highest per capita debt in 2018?

student_loan_debt %>%
filter(year == 2018)%>%
arrange(desc(per_capita_student_debt)) %>%
head(1)

## # A tibble: 1 x 3
## state year per_capita_student_debt
## <chr> <dbl> <dbl>
## 1 DC 2018 13320

Filtering Data

To print the state with the lowest or highest per capita debt, you can subset with base syntax, which looks
something like this:

student_loan_debt[row_number, column_number]
student_loan_debt[row_condition, ]$column_name

Or you can subset with the filter function from the tidyverse, which is a bit easier to read. The pull function
does the same thing as the $ sign, which pulls a column from a data frame.
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filter(student_loan_debt, row_condition) %>%
pull(column_name)

Note: Another function you’ll run into often that works similarly to pull() is select(). To put it simply,
pull() returns the data from a column, while select() can pick more than one variable and returns a tibble
or data frame with all of those columns. The above code returns a single column vector, column_name. If
you would have used:

filter(student_loan_debt, row_condition) %>%
select(column_name)

You would have gotten a data frame that contains one column, column_name. These two things might
appear to be the same at first glance, but over time you’ll see they’re not! Digression over.

What is a “row_condition” in this case? It’s just something that we want to filter on, for example:

filter(student_loan_debt, per_capita_student_debt < 800) %>%
head()

## # A tibble: 6 x 3
## state year per_capita_student_debt
## <chr> <dbl> <dbl>
## 1 AK 2003 680
## 2 AR 2003 710
## 3 HI 2003 730
## 4 NC 2003 780
## 5 NV 2003 730
## 6 PR 2003 500

Try writing a filter statement to get all states with an average per capita student debt of 5000 or higher in
the year 2008. Yes, you can combine multiple criteria - just add a comma and another filtering criteria!

Hint: Your code should look like this: filter(data, condition1, condition2).

student_loan_debt %>%
filter(per_capita_student_debt > 5000, year == 2008)

## # A tibble: 1 x 3
## state year per_capita_student_debt
## <chr> <dbl> <dbl>
## 1 DC 2008 7420

Finally, filter is great for helping us figure out where the missing values are in our data.

filter(student_loan_debt, is.na(per_capita_student_debt))

## # A tibble: 2 x 3
## state year per_capita_student_debt
## <chr> <dbl> <dbl>
## 1 PR 2017 NA
## 2 PR 2018 NA

Who is missing data in 2017 and 2018?

Puerto Rico
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Grouping and Summarizing Data

You might notice that our data is a little awkward to work with right now. We have state-year data instead
of just yearly data. One thing that R is great at is helping us come up with groupwise averages, minima,
maxima, and more!

For example, here is code to take student_loan_debt, group it by year, and then find the maximum per
capita debt by year.

max_debt_by_year <- student_loan_debt %>%
group_by(year) %>%
summarize(max_debt = max(per_capita_student_debt))

max_debt_by_year

## # A tibble: 16 x 2
## year max_debt
## <dbl> <dbl>
## 1 2003 3120
## 2 2004 4350
## 3 2005 4560
## 4 2006 5900
## 5 2007 6430
## 6 2008 7420
## 7 2009 7920
## 8 2010 8700
## 9 2011 9640
## 10 2012 10670
## 11 2013 10880
## 12 2014 11260
## 13 2015 11780
## 14 2016 12200
## 15 2017 NA
## 16 2018 NA

Try calculating the minimum per capita debt by year. Assign it to a new dataframe called
min_debt_by_year instead of max_debt_by year.

min_debt_by_year <- student_loan_debt %>%
group_by(year) %>%
summarize(min_debt = min(per_capita_student_debt))

min_debt_by_year

## # A tibble: 16 x 2
## year min_debt
## <dbl> <dbl>
## 1 2003 500
## 2 2004 650
## 3 2005 720
## 4 2006 870
## 5 2007 990
## 6 2008 1070
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## 7 2009 1250
## 8 2010 1420
## 9 2011 1510
## 10 2012 1770
## 11 2013 1950
## 12 2014 2100
## 13 2015 2320
## 14 2016 2620
## 15 2017 NA
## 16 2018 NA

How about the mean per capita debt by year? Let’s call this data frame student_loan_debt_by_year, and
the variable per_capita_student_debt. Write this one from scratch!

student_loan_debt_by_year <- student_loan_debt %>%
group_by(year) %>%
summarize(per_capita_student_debt = mean(per_capita_student_debt))

student_loan_debt_by_year

## # A tibble: 16 x 2
## year per_capita_student_debt
## <dbl> <dbl>
## 1 2003 1123.
## 2 2004 1509.
## 3 2005 1673.
## 4 2006 2043.
## 5 2007 2322.
## 6 2008 2752.
## 7 2009 3075.
## 8 2010 3422.
## 9 2011 3676.
## 10 2012 4070.
## 11 2013 4289.
## 12 2014 4520.
## 13 2015 4703.
## 14 2016 4939.
## 15 2017 NA
## 16 2018 NA

Like with filter, you can have multiple summarize() statements separated by a comma. Combine your work
from the three examples into a single block of code that returns a data frame with the min, mean and max
debt levels for the US.

student_loan_debt_by_year <- student_loan_debt %>%
group_by(year) %>%
summarize(min_debt = min(per_capita_student_debt),

max_debt = max(per_capita_student_debt),
per_capita_student_debt = mean(per_capita_student_debt))

student_loan_debt_by_year %>%
head(3)
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## # A tibble: 3 x 4
## year min_debt max_debt per_capita_student_debt
## <dbl> <dbl> <dbl> <dbl>
## 1 2003 500 3120 1123.
## 2 2004 650 4350 1509.
## 3 2005 720 4560 1673.

What is the minimum and mean per capita debt in 2011?
Min: $1,510 Mean: $3675.96

student_loan_debt_by_year %>%
filter(year == 2011)

## # A tibble: 1 x 4
## year min_debt max_debt per_capita_student_debt
## <dbl> <dbl> <dbl> <dbl>
## 1 2011 1510 9640 3676.

Dealing with Missing Data

Notice anything strange about the years 2017 and 2018? The values were NA for everything, even though
we had data for most states. This is because NAs are “sticky”, which means taking the mean of a vector
with NAs makes the output NA. You can get around this with the na.rm = argument in min(), max(), and
mean(). Try adding it to the mean() function.

mean(c(NA, 1, 2, 3))

## [1] NA

mean(c(NA, 1, 2, 3),na.rm=TRUE)

## [1] 2

Hint: Your mean function inside of summarize should look like this: mean(variable, na.rm = TRUE).
What is the mean per capita debt in 2018, excluding Puerto Rico (PR)?

student_loan_debt %>%
filter(year == 2018) %>%
summarise(per_capita_student_debt = mean(per_capita_student_debt,na.rm=TRUE))

## # A tibble: 1 x 1
## per_capita_student_debt
## <dbl>
## 1 5438.

student_loan_debt %>%
filter(year == 2018, state != "PR") %>%
summarise(per_capita_student_debt = mean(per_capita_student_debt))

## # A tibble: 1 x 1
## per_capita_student_debt
## <dbl>
## 1 5438.
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Joining and Plotting Data

Our analysis is close now! One thing to note: we took an average of averages so our per capita estimate may
be wrong. We saw that DC had very high debt levels. However, it has a small population compared to the
states.

To tackle this, we’ll use a population dataset from the same spreadsheet. We clean it with the following
code, which is similar to what we did before. Here’s the code used to clean the data:

# library(readxl)
# library(dplyr)
population <- read_xlsx("Data/area_report_by_year.xlsx", sheet = "population", skip = 3) %>%

filter(state != "allUS") %>%
pivot_longer(cols = -state, names_to = "year", values_to = "population") %>%
mutate(year = str_sub(year, 4, 7),

year = as.numeric(year))

write_csv(population, "population.csv")

The cleaned dataset is population.csv. Let’s load it:

population <- read_csv("population.csv")

## Parsed with column specification:
## cols(
## state = col_character(),
## year = col_double(),
## population = col_double()
## )

Let’s join the population data to our debt data and then weight the data by population.

joined_data <- student_loan_debt %>%
left_join(population, by = c("state", "year"))

We essentially use state and year as ways to link the two dataframes to each other. This is a common
functionality in databases (and in SQL), but we can do the same in R!

To reweight, follow the following steps:

1. Use mutate() to calculate the total student debt in a state. (pop x debt/person = total debt)

student_loan_debt_by_year_weighted <- joined_data %>%
mutate(total_debt = population*per_capita_student_debt)

student_loan_debt_by_year_weighted %>% head()

## # A tibble: 6 x 5
## state year per_capita_student_debt population total_debt
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 AK 2003 680 478640 325475200
## 2 AK 2004 1730 492740 852440200
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## 3 AK 2005 1910 497340 949919400
## 4 AK 2006 2250 502840 1131390000
## 5 AK 2007 2340 499840 1169625600
## 6 AK 2008 2530 497080 1257612400

2. Use group_by() and summarize() to calculate the total debt in the US each year and the population
of the US each year. Be wary of NAs.

student_loan_debt_by_year_weighted <- joined_data %>%
mutate(total_debt = population*per_capita_student_debt) %>%
group_by(year) %>%
summarize(total_US_debt = sum(total_debt, na.rm=TRUE),

total_US_pop = sum(population, na.rm=TRUE))

student_loan_debt_by_year_weighted %>% head()

## # A tibble: 6 x 3
## year total_US_debt total_US_pop
## <dbl> <dbl> <dbl>
## 1 2003 252660256200 238199960
## 2 2004 345229079200 239316060
## 3 2005 391869012200 242843440
## 4 2006 481314064200 244334020
## 5 2007 546355199200 242957640
## 6 2008 638787930800 239409820

3. Use mutate() to calculate the per capita student debt.

student_loan_debt_by_year_weighted <- joined_data %>%
mutate(total_debt = population*per_capita_student_debt) %>%
group_by(year) %>%
summarize(total_US_debt = sum(total_debt, na.rm=TRUE),

total_US_pop = sum(population, na.rm=TRUE)) %>%
mutate(per_capita_student_debt = total_US_debt/total_US_pop)

student_loan_debt_by_year_weighted %>% head()

## # A tibble: 6 x 4
## year total_US_debt total_US_pop per_capita_student_debt
## <dbl> <dbl> <dbl> <dbl>
## 1 2003 252660256200 238199960 1061.
## 2 2004 345229079200 239316060 1443.
## 3 2005 391869012200 242843440 1614.
## 4 2006 481314064200 244334020 1970.
## 5 2007 546355199200 242957640 2249.
## 6 2008 638787930800 239409820 2668.

Plotting our Estimates

One of the nicest things to do in R is custom visualization. One package that is especially good for plotting
and graphs is called ggplot2.
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Use the following ggplot2 code to compare your original unweighted estimates in student_loan_debt_by_year
to the weighted estimates in student_loan_debt_by_year_weighted. The unweighted estimates will be in
red.

library(ggplot2)
student_loan_debt_by_year_weighted %>%

ggplot(aes(x = year, y = per_capita_student_debt)) +
geom_line() +
theme_minimal() +
geom_line(data = student_loan_debt_by_year, color = "red")

## Warning: Removed 2 row(s) containing missing values (geom_path).
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You will see that the red line shows that the unweighted estimates of per capita debt are biased up-
ward.Weights move the whole line downward, but by an economically small amount. Our estimates are lower
than you might expect, because they include the full population. To understand how debt effects individual
borrowers, we might could get additional data on the number of borrowers say population_of_borrowers
and calculate the estimates as:

mutate(per_borrower_student_debt = total_debt/population_of_borrowers)

If you’re interested in learning more about ggplot2, R for Data Science has a great chapter on the package
and we have a “bonus” lesson on the course website.
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